Sequential Decision-Making: Theory and Applications in Public Health

Mengyan Zhang

Department of Computer Science, University of Oxford

Machine Learning & Global Health Network

@LAS Group – ETH Zurich 15/2/2024

About me

- NCCR Automation Visit Fellowship
- Postdoc at the University of Oxford, supervised by Seth Flaxman
- Member of Machine Learning and Global Health
- PhD in Australian National University; Data61, CSIRO (Thesis: Adaptive Recommendations with Bandit Feedback)
- Research interest:
 - Sequential decision-making imperfect feedback; causal decision-making
 - Applications in public health
- Hobbies: photography, nature, travel

Sequential Decision-Making & Public Health

Sequential Decision-Making

Bandit, Bayesian Optimization, Active Learning, Reinforcement Learning

Public Health

Vaccine Allocation, Disease Surveillance, Sensor Placement, Personalized Treatment

Outline

Imperfect Feedback: Aggregated Feedback

Applications in Public Health

Causal Decision Making Active Disease Surveillance Vaccine Allocation

Conclusion & Future Work

Why Aggregated Feedback?

Application	Arm	Reward	Goal: to design a policy such that	Why Aggregated?
DNA Design	DNA sequences	average protein expression level in a mixed culture	identify DNA sequences with the highest protein expression level with a given budget	expensive; search space is large
Census Querying	Respondent	average age of respondents inside queried area	identify the region with the highest average age with a fixed amount of querying	privacy concerns
Radio Telescope	spatial-frequency coordinates of objects in the sky	average radio wave energy from the queried area	identify the region with the highest average radio energy with a fixed amount of querying	hardware constraint

Reward Smoothness – e.g. Gaussian Process $f(\mathbf{x}) \sim \mathcal{GP}(\mu(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$ $\mu(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$ and $k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) - \mu(\mathbf{x}))(f(\mathbf{x}') - \mu(\mathbf{x}'))].$

Acquisition Function: e.g. GP-UCB

Gaussian Process Upper Confidence Bound (GP-UCB)

[1] Srinivas, N.; Krause, A.; Kakade, S. M.; and Seeger, M., Gaussian process optimization in the bandit setting: No regret and experimental design. ICML 2009.

Computational cost for continuous space

$$\operatorname{argmax}_{\mathbf{x}_i \in \mathcal{K}} (\mu_t(\mathbf{x}_i) + \beta_t \sigma_{t-1}(\mathbf{x}_i))$$

- Arms: a leaf node, corresponding to a subset of continuous $[0,1]^d$
- Rewards: sampled from GP, only average reward for a node

$$r_t = \bar{F}(X_{h_t, i_t}) + \epsilon_t, \quad \bar{F}(X_{h_t, i_t}) := \frac{\sum_{\boldsymbol{x} \in \mathcal{C}_{h_t, i_t}} f(\boldsymbol{x})}{|\mathcal{C}_{h_t, i_t}|}$$

with **Representative points** $C_{h,i} = \{x_{h,i^s}\}_{1 \le s \le S}$, where $x_{h,i^s} \in \mathcal{X}_{h,i}$.

• Aggregated Regret
$$R_N = f(\boldsymbol{x}^*) - \bar{F}(X_N).$$

[1] Gaussian Process Bandits with Aggregated Feedback. Mengyan Zhang, Russell Tsuchida, Cheng Soon Ong. AAAI 2022.

Gaussian Process Optimistic Optimisation (GPOO) How to choose node and when to split?

Assumption: Decreasing Diameters: $\sup_{\boldsymbol{x} \in \mathcal{X}_{h,i}} L\ell(\boldsymbol{x}_{h,i}, \boldsymbol{x}) \leq \delta(h)$ some decreasing sequence $\delta(h) > 0$.

• Select leaf node with largest b-value:

 $b_{h,i}(t)$ = posterior mean + confidence interval + diameter $\delta(h_t)$

- **Expand:** if $\delta(h_t)$ > confidence interval
- **Return:** the node with the maximum posterior mean in the deepest non-leaf layer

Contributions of GPOO

Theoretical results:

[1] Gaussian Process Bandits with Aggregated Feedback. Mengyan Zhang, Russell Tsuchida, Cheng Soon Ong. AAAI 2022.

80

60

20

Ω

40

Budget

Beyond GPOO?

- Can we select "cells" beyond the tree structure?
- Can we extend the average over representatives to a more complicated aggregation? -- conditional expectation
- Can we learn the optimal in terms of original functions, instead of aggregated values?
- Motivation: we'd like to query user groups by e.g. gender, age, region, etc (privacy, expensive data query)
 - Malaria incidence optimization (target: malaria incidence rate)
 - Survey design (target: survey of interest, non-response)
 - Treatment effect optimization (target: individual treatment effect)

Deconditional Bayesian Optimisation

- Optimise unknown function $\ f:\mathcal{X} o \mathbb{R}$, where $\ \mathcal{X} \subset \mathbb{R}^d$.
- Observe dataset $\mathcal{D}_1 = \{(x_j, y_j)\}_{j=1}^N$, where $y_j \sim \mathbb{P}_Y$ and $x_j \sim \mathbb{P}_{X|Y=y_j}$
- Goal: identify global optimal point $x_* = \arg \max_{x \in \mathcal{X}} f(x)$
- Sequentially query: $ilde{y}\in\mathcal{Y}$ and observe noisy rewards $ilde{z}=g(ilde{y})+\epsilon$

$$g(\tilde{y}) = \mathbb{E}_X[f(X)|Y = \tilde{y}] = \int_{\mathcal{X}} f(x)p(x|\tilde{y})dx$$

• Evaluation: expected simple regret, with budget M

$$R_M = \mathbb{E}[|f(\mathbf{x}_M) - f(\mathbf{x}_*)|]$$

 ${}^{b}\!x$

 $x^{(i)}$

Background: Deconditional Posterior

Conditional Mean Process (CMP): $f \sim \mathcal{GP}(m,k)$

Then $g \sim \mathcal{GP}(v,q)$ $\nu(y) = \mathbb{E}_X[m(X) \mid Y = y] \quad q(y,y') = \mathbb{E}_{X,X'}[k(X,X') \mid Y = y,Y' = y']$

Deconditional Posterior:

$$\begin{bmatrix} f(\mathbf{x}) \\ \tilde{\mathbf{z}} \end{bmatrix} \mid \mathbf{y}, \tilde{\mathbf{y}} \sim \mathcal{N}\left(\begin{bmatrix} m(\mathbf{x}) \\ \nu(\tilde{\mathbf{y}}) \end{bmatrix}, \begin{bmatrix} \mathbf{K}_{\mathbf{x}\mathbf{x}} & \mathbf{\Upsilon} \\ \mathbf{\Upsilon}^{\top} & \mathbf{Q}_{\tilde{\mathbf{y}}\tilde{\mathbf{y}}} + \sigma^{2}\mathbf{I}_{M} \end{bmatrix}\right)$$

Siu Lun Chau, Shahine Bouabid, and Dino Sejdinovic. Deconditional Downscaling with Gaussian Processes. NeurIPS 2021.

Deconditional Predictive Entropy Search

$$\mathcal{D}_1 = \{(x_j, y_j)\}_{j=1}^N$$
, where $y_j \sim \mathbb{P}_Y$ and $x_j \sim \mathbb{P}_{X|Y=y_j}$

$$\mathcal{D}_2^M = \{ (\tilde{y}_j, \tilde{z}_j) \}_{j=1}^M$$

Pick in Y space, but optimise f(x)?

$$\begin{split} \tilde{y}_{M+1} &= \arg \max_{\tilde{y} \in \mathcal{Y}} \mathbb{I}(\tilde{z}, x_* | \tilde{y}, \mathcal{D}_1, \mathcal{D}_2^M) \\ &= \arg \max_{\tilde{y} \in \mathcal{Y}} H[\tilde{z} | \tilde{y}, \mathcal{D}_1, \mathcal{D}_2^M] - \mathbb{E}_{x_* | \mathcal{D}_1, \mathcal{D}_2^M} [H[\tilde{z} | x_*, \tilde{y}, \mathcal{D}_1, \mathcal{D}_2^M]] \end{split}$$

_ _

Potentially Future Work

- Sequentially query D1
- Partial monitoring
- Cumulative regret setting: information directed sampling
- Distributionally Robust BO (distributional context)

Applications in Public Health

Causal Bayesian Optimisation with Unknown Graph

Structural Bandits – taking causal

structure into account

- The causal graph can be unknown or partially known
- Balance: exploitation exploration (surrogate model, causal structure)

Causal Bayesian Optimisation with Unknown Graph

Causal Bayesian Optimisation with Unknown Graph

Causal Bandits with Unknown Graph

Applications: Epidemiology

Minimise HIV viral load – two possible treatments T,R

Extension

- Theoretical analysis
- Best arm identification setting
- More scalable approach
- With imperfect feedback

Active Disease Surveillance

Simulations 1.0 -0.9 0.8 AUC 0.7 0.6 0.5 + 50 75 100 0 25 Time 1.0 0.9 0.8 AUC 0.7 0.6 0.5 -20 60 80 0 40

bald

least_confidence

150

node_entropy

125

bald

Time

node_entropy

100

random

reactive

175

random

140

reactive

120

Next Steps

- Extend to GP on graph
- Extend to Dynamic Setting (prevalence changes wrt time) – SEIR Model

Italy network with thinning (only top 20%), with simulated prevalence (red indicated infected, blue uninfected)

Pepe, E., Bajardi, P., Gauvin, L., Privitera, F., Lake, B., Cattuto, C., & Tizzoni, M. (2020). COVID-19 outbreak response, a dataset to assess mobility changes in Italy following national lockdown. Scientific Data 7, 230 (2020). https://data.humdata.org/dataset/covid-19-mobility-italy

Applications: vaccine allocation

- Identify optimal strategies (highest median reward) for vaccine allocation
- Arm: vaccine allocation strategy (Allocate 100 vaccine doses to 5 age groups -- all combinations as arms)
- Reward: proportion of individuals that did not experience symptomatic infection

Conclusion & Future Work

• Aggregated Feedback

- Patrial monitoring
- Cumulative regret setting
- Instrumental Variable regression
- Distributionally Robust BO

• Causal Decision making

- Theoretical analysis
- Best arm identification setting
- More scalable approach
- With imperfect feedback

Conclusion & Future Work

• Aggregated Feedback

• Causal Decision making

• ... and public health/policy applications

Thanks for listening! and looking forward to chatting with you :)

> Mengyan Zhang mengyan.zh@outlook.com https://mengyanz.github.io/