
Classification of historical death
and occupation coding

Mengyan Zhang

A subthesis submitted in partial fulfillment of the degree of

Bachelor of Advanced Computing (Honours) at
Research School of Computer Science

Australian National University

May 2018

c©Mengyan Zhang

Typeset in Palatino by TEX and LATEX 2ε.

Except where otherwise indicated, this thesis is my own original work.

Mengyan Zhang
17 May 2018

Acknowledgements

I would like to thank my supervisors Prof Peter Christen (Research School of Com-
puter Science, Australian National University) and Dr Timothy Graham (Research
School of Computer Science, Australian National University) for their support and
guidance throughout my honours year, with their expertise and patience. I could not
have imagined having better supervisors for my research and thesis writing.

I would like to thank ANU and Research School of Computer Science for teaching
and supporting over my undergraduate career. I have learnt a way to learn knowledge
and been inspired by many outstanding researchers.

Many thanks to my family for their love and support throughout my life. My par-
ents, Zheng Zhang and Shuqin Wang, have been encouraging and and understanding
all the time.

I would like to thank my friend Tianyu Wang for his loving support throughout
the year.

v

Abstract

This is my honours thesis, I summary the key points here, see detailed approaches in
the following chapters if interested.

1. Describe the most significant research I have worked on.
A growing number of digitised historical data collections provide important op-
portunities for social scientists to study historical records and generalise rules
and patterns about society. Automatic coding historical records, for example
historical occupations or causes of death, into standard systems can help social
researchers to reduce a significant amount of manual work and study historical
populations in more detail. The goal of this work is to develop text classifi-
cation techniques that can deal with sparse and rare data, and evaluate these
techniques on real-world data collections.

2. How I approached key technical challenges.
This thesis focuses on three main steps of automatically classifying historical
coding systems. First, due to the low data quality and sparse data, a variety of
data pre-processing techniques are explored, including data cleaning methods,
feature generation schemes, and dimensionality reduction techniques. Second,
for the multi-class and multi-label classification tasks, we train one classifier for
each class using classification techniques including naive Bayes, logistic regres-
sion, support vector machines and decision trees. Third, different evaluation
techniques and metrics are investigated for their applicability within this imbal-
anced classification problem.

We use two datasets collected from Scotland from two domains. The cause of
death dataset contains 23,564 records with 591 unique death codes; while the
occupation dataset contains 64,063 records with 418 unique occupation codes.
We achieve a best classification performance with 0.78 precision, 0.66 recall and
0.65 F-measure on the cause of death dataset; and 0.93 precision, 0.94 recall and
0.85 F-measure on the occupation dataset.

We implement our algorithms in Python.

3. What I gained from the experience.
Compared with previous work, our approaches have achieved a significant im-
provement in terms of classification performance. Furthermore, our approaches
can be successfully applied in the two data domains, which shows the methods
we have developed can be successfully generalised.

By doing this research project, I become familiarised with the various stages of
a real-world supervised machine learning project, and am able to identify and

vii

viii

apply existing tools (e.g., sklearn) to classify text data using a variety of estab-
lished algorithms (e.g., SVM, decision trees), as well develop novel data pre-
processing and feature construction methods. Besides, I am able to implement
string matching and data wrangling techniques to transform text data in order
to improve classification performance (e.g., accuracy).

Contents

Acknowledgements v

Abstract vii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Data Description . 3
1.3 Objectives . 4
1.4 Research Methodology . 4
1.5 Thesis outline . 6

2 Background 7
2.1 Social Science Background . 7
2.2 Encoding Historical Classification System 8

2.2.1 Cause of Death: ICD-10 . 8
2.2.2 Occupation Titles: HISCO . 8

2.3 Related Work . 9
2.4 Data mining Techniques Explored . 12

2.4.1 Data Pre-processing . 12
2.4.1.1 Data Cleaning . 12
2.4.1.2 Feature Generation . 13
2.4.1.3 Feature Extraction: Dimensionality Reduction 14

2.4.2 Classification . 15
2.4.2.1 Types of Classification Tasks 16
2.4.2.2 Classifier Construction 17

2.4.3 Evaluation . 22
2.5 Chapter Summary . 23

3 Methodology 25
3.1 Data pre-processing . 25

3.1.1 Data cleaning . 26
3.1.2 Feature Generation . 31
3.1.3 Dimensionality Reduction: Principal Component Analysis 35

3.2 Classification . 37
3.2.1 Multi-class and Multi-label Classification 37
3.2.2 Classifier construction . 41

3.3 Evaluation . 42

ix

x Contents

3.4 Chapter Summary . 44

4 Evaluation 47
4.1 Dataset Description . 47
4.2 Experiments and Results . 54

4.2.1 Experimental Setup . 54
4.2.2 COD : Experimental Design and Results 56
4.2.3 OCC : Experimental Design and Results 71
4.2.4 Chapter Summary . 76

5 Conclusion 77
5.1 Limitations . 80
5.2 Future Work . 81

A Appendix 83
A.1 COD Classifiers and Features Experiment 83

Bibliography 87

List of Figures

1.1 Sample image of cause of death records 1
1.2 Sample image of occupation records . 2
1.3 Research methodology. 5

2.1 Type of classification. 16
2.2 Logistic function curve. 19
2.3 Example of decision tree model. 21

3.1 Historical coding classification process . 25
3.2 Frequent and infrequent set example. 28
3.3 Explained variance ratio for PCA. 36
3.4 Example of record-code matrix. 37
3.5 Historical coding classification algorithm pipeline 45

4.1 Examples of the main code extraction process 48
4.2 Code frequency distribution in COD training dataset. 50
4.3 Code frequency distribution in OCC training dataset. 51
4.4 Text length distribution in COD training dataset. 52
4.5 Text length distribution in OCC training dataset. 52
4.6 Overall best performance (COD). 58
4.7 Frequency of best classifiers for five CFGs (COD). 62
4.8 Frequency of best features for five CFGs (COD). 63
4.9 Frequency of best classifiers for three WLGs (COD). 64
4.10 Spelling correction parameter experiments. 66
4.11 Spelling correction performance experiments. 68
4.12 PCA experiment results. 69
4.13 OCC performance versus code frequency 73
4.14 OCC performance and run time comparison 74
4.15 OCC performance and run time comparison for Improvement Experiment 75

xi

xii LIST OF FIGURES

List of Tables

1.1 Example COD training records. 3
1.2 Example COD testing records. 3
1.3 Example OCC records. 4

2.1 Contingency table for binary classification 22
2.2 Evaluation metrics . 23

3.1 Individual feature types and examples. 32
3.2 Sample COD records with term frequency. 33
3.3 Document frequency (DF) and inverse document frequency (IDF) ex-

ample. 34
3.4 TF-IDF example. 34
3.5 Record-feature matrix example . 35
3.6 Example for predicted labels. 44

4.1 ICD-10 Classification scheme examples 47
4.2 The COD dataset unique code counts . 48
4.3 HISCO scheme examples . 49
4.4 The OCC dataset unique code counts . 49
4.5 Five least and most frequent codes in the COD Dataset 50
4.6 Misspelling examples in the COD dataset 53
4.7 Misspelling examples in the OCC dataset 53
4.8 Experimental parameters setup. 56
4.9 Setting for classifier and feature experiment 57
4.10 Poor performance codes. 60
4.11 Top 5 rank best combinations. 60
4.12 Examples for Spelling Correction. 67
4.13 Setting for spelling correction experiments. 67
4.14 Setting for PCA experiments. 69
4.15 Best performance summary for COD Dataset. 70
4.16 Best performance for OCC dataset (without spelling correction and PCA) 71
4.17 Best performance summary for OCC dataset. 75

5.1 Overall best performance. 78
5.2 Classification results from previous work 78

A.1 Rank results for CFG 1 (with code frequency [1,2]) 83
A.2 Rank results for CFG 2 (with code frequency [2,4]) 83

xiii

xiv LIST OF TABLES

A.3 Rank results for CFG 3 (with code frequency [4,12]) 84
A.4 Rank results for CFG 4 (with code frequency [12,42]) 84
A.5 Rank results for CFG 5 (with code frequency [42,2834]) 84
A.6 Rank results for WLG 1 (with world length [1,2]) 84
A.7 Rank results for WLG 2 (with world length [2,3]) 85
A.8 Rank results for WLG 3 (with world length [3,11]) 85

Chapter 1

Introduction

1.1 Problem Statement

Social scientists are provided with an increasing number of research opportunities
based on a growing number of digitised historical data collections. Coding historical
records, such as causes of death or occupations, to standard classification systems can
help researchers to study the relationships between different historical factors and
produce multi-generational studies [Connelly et al. 2016]. This leads to an increasing
need for studying the original historical records using advanced methods.

Researchers in Scotland aim to classify 8.3 million causes of death records and
50 million occupation titles into the International Classification of Disease (ICD-10
classification) [WHO 1990] and Historical International Standard Classification of Oc-
cupations (HISCO) [Van Leeuwen et al. 2002] respectively. The collected data was
handwritten and manually entered into databases. The samples of collected cause of
death and occupation data in Scotland are shown in Figures 1.1 and 1.2.

Figure 1.1: Sample image of cause of death records (third column from the right)
[National Records of Scotland 1980].

1

2 Introduction

Figure 1.2: Sample image of occupation records (middle column) [National Records
of Scotland 1901].

For our experiments in this project, we chose two subsets of the mentioned cause
of death and occupation datasets used by Scottish researchers. We explore different
methodologies for their suitability on both of these datasets. Our methodologies can
then be used by the Scottish researchers and help them to accurately and efficiently
classify their large datasets mentioned above.

This problem of automatically classifying historical records into modern standard
classification systems is challenging for the following reasons:

• The historical data is noisy. The text descriptions are not standardised, and in-
clude many abbreviations and narrative descriptions, as shown in Table 1.1. Fur-
thermore, the scanned copies of handwritings (e.g. Figures 1.1 and 1.2) are not
clear enough and not easy to read, which leads to many typographical errors in
the digitised historical datasets.

• Data sparsity is caused by highly skewed distributions of classes and text length.
For some classes, only a few training records are available (e.g. for the cause
of death dataset, there are 92 classes (codes) with only 1 training record), which
makes it difficult to apply certain machine learning approaches for our problem.

• We face the human coding inconsistency problem, where the same text record
might be manually classified into different classes by different domain experts.

• Since our approaches may eventually be applied to a large dataset in Scotland,
classification algorithms should be efficient and scalable to large datasets.

Applying machine learning methods to the historical administrative data is novel
and only a few previous relevant publications are available. For example, Carson
et al. [2013] and Kirby et al. [2015] explored data pre-processing and machine learn-
ing methods on the same datasets as we used, and they found that naive Bayes has the

§1.2 Data Description 3

best performance. For further details about their work see Section 2.3. However, their
approaches only achieved 0.4 F-measure for the cause of death dataset and around 0.6
precision/recall for the occupation titles dataset, which are not good enough for accu-
rately classifying the historical records. This promotes us to explore better techniques
for data pre-processing and classification for historical administrative records.

1.2 Data Description

The target datasets used in this research contain historical descriptions recorded in
Scotland from two domains: causes of death and occupation titles. We will use the
abbreviation COD for the cause of death dataset and OCC for the occupation dataset
throughout this thesis. All datasets have been coded into standard classification schem-
es by expert historians [Carson et al. 2013; Kirby et al. 2015]. A cause of death string
may contain more than one causes, and we consider the first one in the list to be the
primary cause. Personal details are not available in our dataset. We briefly introduce
the two datasets we used in following and will describe them in more detail in Section
4.1.

Cause of death dataset (COD):
This dataset contains a total of 23,564 records, split into a training dataset (18,877

records) and a testing dataset (4,687 records), from Kilmarnock in Scotland and covers
the period from 1861 to 1901. See [Carson et al. 2013] for more information about this
dataset. In the training dataset one record is assigned to one ICD code while in the
testing dataset one record is assigned to between 2 to 4 ICD codes. Tables 1.1 and 1.2
show some example training and testing records from this dataset.

ID Cause of death Code (ICD-10)
785 hc A37.90
7425 cancer of stomack C16.90
14832 saw the child just before he died and am of opinion

he died from fracture of base of the skull
Y34.01

Table 1.1: Example COD training records.

ID Cause of death Code 1 Code 2 Code 3 Code 4
2848 1. disease of prostate gland 2.

retention of urine & disease
of bladder 3. irritation fever

N42.90 R34.02 N32.90

13027 both bron & asthma, child-
birth & enteritis

J40.00 J45.90 O95.00 A09.01

18950 both flu; syncope J11.10 R55.00

Table 1.2: Example COD testing records.

4 Introduction

Occupation dataset (OCC):
Sourced from the Cambridge Family History Study for the period from 1714 to

1995 [Bottero and Prandy 2001], this dataset contains 243,669 occupational titles that
were originally coded to SOCN, which is an extension of the SOC (Standard Occu-
pational Classification) coding system [US Bureau of Labor Statistics 2010]. 64,063 of
these records are manually coded to HISCO [Van Leeuwen et al. 2002] according to
a fixed SOCN-HISCO mapping. See [Kirby et al. 2015] for more information about
this dataset. We use these 64,063 records as our experimental dataset. One dataset is
given for occupation titles, where each record is assigned to one HISCO code. Table
1.3 shows examples of occupation records.

ID Occupation Titles Code (HISCO)
1176 mp 2-0
1463 governor (rear admiral rn) of naval hospital 2-0
2123 scientific assistant, meteorological office, air m 1-30.00
4431 master mariner/ship owner 4-12.50

Table 1.3: Example OCC records.

1.3 Objectives

The objectives of this project are to use the real historical death and occupation datasets
described in the previous section to develop text classification techniques that can deal
with sparse and rare data, and evaluate these techniques on large real-world data col-
lections. Specifically, due to low data quality and data sparsity, a variety of data pre-
processing and feature generation schemes need to be explored for their suitability
to classifying such data, and because of possible multiple causes in a single death or
occupation description, multi-class as well as multi-label classification techniques are
employed.

1.4 Research Methodology

We use the research methodology shown in Figure 1.3 in our research. The detailed
approaches in each step are as follows:

1. Preliminary Study: Learn about basic techniques for text processing and classi-
fication. Understand the basic social science background for our research.

2. Set Research Goals: Based on the preliminary study and literature review, we
formulate research problems and set primary goals. These research goals may
change during the research process.

3. Literature review: This step includes two parts: one is to review concepts and
techniques used to solve research problems, including data pre-processing and

§1.4 Research Methodology 5

1. Preliminary Study

2. Set Research Goals 3. Literature Review

Review Concepts and
Theories

Review Previous Work4. Quantitative and
Qualitative Analysis of Data

5. Design Algorithms

6. Prototype Development

7. Experimental Setup

8. Experimental Study and
Evaluation

Figure 1.3: The research methodology used in this project.

machine learning techniques; while the second part is to review previous related
research publications. We mainly review [Carson et al. 2013] and [Kirby et al.
2015] that performed the classification task on the same COD and OCC datasets.

4. Quantitative and Qualitative Analysis of Data: We analyse the two datasets in
terms of the number of records, codes, and the quality of data items, which
determines which further methods we can use for our research. The dataset
characteristics are shown in Section 4.1.

5. Design Algorithms: Based on the conducted data analysis and literature review,
we develop algorithms that suit the research data.

6. Prototype Development: We design the processes of research, including data
pre-processing, classification and evaluation (described in detail in Chapter 3).

6 Introduction

7. Experimental Setup: Experiments are conducted using Python 2.7.14 including
the Numpy 1, Pandas 2, Scikit-learn 3, and Matplotlib 4 libraries.

8. Experimental Study and Evaluation: We use precision, recall and the F-measure
for evaluation (see Chapter 4 for details). Based on the obtained evaluation re-
sults, algorithms and prototype are re-designed.

1.5 Thesis outline

In this thesis, we will show the background of this work in Chapter 2, which includes
the general social science background for historical coding and the state-of-art of clas-
sification techniques. Chapter 3 describes the methodologies we developed for his-
torical coding classification, including the data pre-processing techniques, classifier
constructions and evaluation methods. Chapter 4 discusses the dataset characteristics
and experiments on the evaluation of those classification techniques. Conclusion and
future work are provided in Chapter 5.

1http://www.numpy.org/
2https://pandas.pydata.org/
3http://scikit-learn.org/stable/
4https://matplotlib.org/

http://www.numpy.org/
https://pandas.pydata.org/
http://scikit-learn.org/stable/
https://matplotlib.org/

Chapter 2

Background

This chapter provides an overview of the general social science background and the
current state-of-art approaches to text classification. Relevant literatures for historical
cause of death (COD) and occupation (OCC) dataset are closely reviewed.

2.1 Social Science Background

Social scientists have been studying historical administrative records for a long time,
where administrative data is defined as information collected for the purposes of reg-
istration, transaction and record keeping [Woollard 2014]. For example, registers’ in-
formation, such as notifications of birth, deaths, marriage, education and occupation,
can be a type of administrative records. The administrative data can be large and com-
plex quantitative information and primarily be generated for a purpose other than re-
search [Connelly et al. 2016]. Thus for research purposes, the historical records need
to be assigned into standard categories, but much of the work involved in assigning
those records into categories has been manual.

In recent years we have witnessed the application of machine learning and other
computer science methods to address these kinds of problems [Reid et al. 2015]. For
example, administrative social science data are likely to be more complex than social
survey data which researchers may be familiar with [Connelly et al. 2016]. The data
can be noisy, so data cleaning approaches and management techniques can be applied
to organise the data into a required format. Similarly, to analyse and examine patterns
in administrative data, the original data usually need to be categorized into a required
coding system or be clustered into several groups. The machine learning classification
or clustering techniques can be explored for the suitability for these kinds of data.

These techniques allow social scientists to automate some parts of their research
and methodologies, and of course to also use computational techniques for analysis
(e.g. data science). Re-using historical records can afford exciting new opportunities
for social science research, although the combination of data science and administra-
tive data analysis have been under-appreciated by the research community [Connelly
et al. 2016]. Social scientists are now increasingly interested in how computer science
methods can be well integrated and used in their field.

7

8 Background

2.2 Encoding Historical Classification System

In this section, we will briefly introduce the historical classification coding systems
used in our work: the cause of death coding system (ICD-10), and occupation coding
system (HISCO).

2.2.1 Cause of Death: ICD-10

To produce a comparable cause of death statistic, the disease classification system
needs to be developed to assign morbid entities according to the established criteria.
In 1853, the first International Classification of Diseases (ICD) was first introduced
at the First International Statistical Congress, with the aim of permitting systematic
recording, analysis, interpretation and comparison of cause of death records collected
from different regions and times [WHO. 2004].

The ICD has eleven revisions since it was first published, where the latest revision
(ICD-11) was published at the beginning of 2018. The tenth revision (ICD-10) was
published in 1989 and used from 1995 to 2017. The COD dataset was classified based
on ICD-10, so we mainly introduce the characteristics of the tenth revision.

The ICD-10 is used to convert diseases from words into alphanumeric codes, which
permits easy storage, retrieval and analysis of the dataset, and become the interna-
tional standard diagnostic classification scheme [WHO. 2004]. The ICD-10 has a hier-
archical classification scheme, where the basic structure is as follows [WHO. 2004]:

• Chapters: The classification includes 22 chapters, where Chapters I - XVII relate
to diseases and other morbid conditions, Chapter XVIII relates to injury, poison-
ing and other external causes, and other chapters cover the matters included in
diagnostic data. One example of chapter coding is ”VI Diseases of the nervous
system”.

• Three-character categories: The first character of the ICD code is a letter, fol-
lowed by numbers. The three-character categories represent the main categories,
for example, ”A00” (Cholera).

• Four-character categories: Most of the three-categories are subdivided with a
fourth, numeric character after a decimal point. For example, ”A00.0” (Cholera
due to Vibrio cholerae 01, biovar cholerae).

2.2.2 Occupation Titles: HISCO

Similarly to the COD data, the historical occupation titles (OCC) need a standard
classification system to help historians perform comparative work. The Historical
International Standard Classification of Occupation (HISCO) was published for this
purpose, which makes the occupational classification consistent and easy to analysis
[Van Leeuwen et al. 2002].

The HISCO was developed based on the existing scheme, ISCO68 ((1968 Inter-
national Standard Classification of Occupations)) and three subsidiary classification

§2.3 Related Work 9

schemes. The HISCO structure is also hierarchical. A total of 1,881 occupation cate-
gories are grouped into:

• Major Group: a total of 10 major groups are in the most generalised level, repre-
sented by a single number. For example, the 4th group represents “Sales Work-
ers”.

• Minor Group: a total of 83 minor groups are the subgroups of major groups, rep-
resented by two numbers. For example, 4-1 represents ”Working Proprietors”.

• Unit Group: the unit group has two levels; the higher level is represented by
three numbers, such as 4-10 (”Working Proprietors (Wholesale and Retail Trade)”);
and the finer level is represented by more than three numbers, such as 410.20
(”Working Proprietor (Wholesale Trade)”). There are a total of 284 unit groups
in the finest level.

2.3 Related Work

In this section, we focus on papers about developing a method for automatically cod-
ing the cause of death (COD) [Carson et al. 2013] and Scottish historical occupation
titles (OCC) [Kirby et al. 2015] to standard classifications. Our research project en-
gages with a similar research problem to these two papers.

The COD Dataset
Firstly, Carson et al. [2013] explored the COD dataset with three approaches:

1. Parsing using regular expressions: a simple parser was used to extract sub-
strings equivalent to the desired coding. For example, an original narrative de-
scription ”injury caused by being run over by a railway truck” can be parsed
as ”injury”, which is corresponding to the standard historian coding ”injury”.
However, this approach cannot deal with the cases where classification includes
phrases not in the original record.

2. Natural language processing: More complex grammatical analysis was con-
ducted using the OpenNLP toolkit [Apache Software Foundation 2010]. But
it was hard to map parse trees to ’gold-standard’ coding.

3. Machine learning: both individual and ensemble methods were tried.

• Individual classifiers:

– Stochastic Gradient Descent (SGD)
– Naive Bayes
– Complementary Naive Bayes

• Ensemble Method [Dietterich 2000]: combine the decisions of individual
classifiers

10 Background

Although the parsing classifier turned out to give a rather low accuracy(44%), it
supplies us with a way of data pre-processing. This kind of simple data cleaning
of input data can improve the SGD classifier’s performance. Before classification, it
is crucial to study the original input data, figure out its features and then design an
appropriate parser for it.

Carson et al. [2013] obtained accuracy from 72%-96% on several test sets. It turns
out the ensemble with confidence-decided selection gave the best performance [Car-
son et al. 2013]. The result shows for the historical short text strings classification prob-
lem, parsing and natural language processing perform worse than machine learning
techniques.

The researchers also conducted experiments to compare classification performance
on unique record datasets with full datasets. As expected, unique record datasets re-
turned a poorer result since the advantage of strengthening by redundant records in
the training dataset would be lost. Carson speculated that performance on the unique
data might be improved if the duplicate records were known [Carson et al. 2013].

However, we think there are some limitations in this work:

• The reason for choosing one classifier rather than others is not explained in suf-
ficient detail. In this way, readers cannot have a clear mind why these classifiers
are worth trying and why the performance of these classifiers should be better
than others.

• Carson et al. chose accuracy (i.e. the percentage of correctly classified records
among all the records) as the performance measurement. But the accuracy does
not suit for evaluation on imbalanced classes. Simply classifying all records
into the large proportion class can lead to a good accuracy. In the COD dataset,
the class distribution is highly skewed and only a small proportion of records
belonging to the positive class. Thus, other performance metrics should be con-
sidered, such as precision and recall [Marina and Guy 2009]. We will discuss
these further in Section 2.4.3.

• In experiments, parsing pre-processing only marginally improved model perfor-
mance. More data pre-processing methods should be explored, such as a variety
of data cleaning, dimensionality reduction and feature selection approaches.

• It is also reasonable to evaluate some other classifiers which are suitable for text
classification, like support vector machine (SVM) [Joachims 1998], decision tree
[Breiman 2001; Baoxun et al. 2012].

Kirby et al. [2015] showed the following research results evaluated by precision,
recall and F-measure, where on the Kilmarnock dataset, they achieved 0.84 precision
and 0.4 recall.

§2.3 Related Work 11

The OCC Dataset
In subsequent research, Kirby et al. [2015] performed experiments on the OCC

dataset. They first analysed occupation data and decided the techniques will be used
based on the analysis. It would not be necessary to perform the cleaning before clas-
sification, as occupation descriptions only contain few words. Furthermore, human
coding inconsistency, i.e. the same occupation might be classified into different cat-
egories, was dealt with by discarding inconsistent titles. Apart from that, due to
the high dimensionality of the text records, Kirby et al. [2015] used feature selection
method (X2 statistic(CHI) [Yang and Pedersen 1997]) to reduce the dimensionality.

The same classification methods may have different performance on different datasets,
so it is essential to analyse the content and structure of datasets and perform data
pre-processing before classification. Without appropriate data pre-processing, we are
unlikely to obtain a good classification result.

For the OCC dataset, Kirby et al. [2015] tried two main approaches:

1. Edit Distance Classifier: The idea is to select the occupation descriptions with
the smallest distance from the standard class. But this approach performs badly
for occupation titles which occur as a substring embedded in the definition
string

2. Machine Learning Classifier:

• Individual Classifiers: Logistic regression using stochastic gradient descent
and naive Bayes.

• Ensemble Approaches: Majority voting and confidence-weighted.

As a result, the best performance is achieved by individual naive Bayes classifier
with cleaning multiple-coded descriptions. This yielded the 61% precision and 66%
recall [Kirby et al. 2015]. This bad performance may be caused by lack of training
records. Ensemble methods did not produce any improvement compared with indi-
vidual Naive Bayes. The reason may be that the performance of Naive Bayes is better
than other classifiers for most codes.

Kirby et al. [2015] also explored the ’potential of new occupational titles’ in future
research, such that whether their study are practical if there are more and more oc-
cupation titles being generated over time. This part of the paper highlights how the
research is dedicated to a real-world problem, which makes the research more practi-
cal and attractive.

After studying the related project, in this project we will concentrate on the fol-
lowing aspects:

• Quantitatively and qualitatively analyse the original datasets and find out what
kind of data pre-processing methods can be used to improve the performance;

• Experimentation with data cleaning measures, such as spelling correction;

• Try different data matching methods for measuring data similarity;

12 Background

• Experimentation with feature selection methods and how they can influence the
classification performance and computational time;

• Explore the suitability in terms of different feature types and classifiers;

• Evaluation on both the COD and OCC datasets to investigate the generalisation
of the developed approaches.

2.4 Data mining Techniques Explored

In this section, we will introduce the general data mining techniques for text classi-
fication task. The main pipeline is data pre-processing, classification and evaluation,
which are shown in Section 2.4.1 to 2.4.3.

2.4.1 Data Pre-processing

Before passing the text collections to a classifier, the original data should be repre-
sented to certain format since they cannot be directly interpreted a classifier-building
algorithm. Data pre-processing covers mainly three aspects, namely data cleaning,
feature extraction and dimensionality reduction [Sebastiani 2002; Christen 2012].

2.4.1.1 Data Cleaning

Data quality directly influences classification performance. The main aim of data
cleaning is to improve consistency and quality of the original data. If perfect quality
data is processed for data matching, we only need simple indexing and comparison
methods to represent the data. Otherwise, sophisticated techniques may be needed to
achieve a good evaluation result. The following aspects could be considered [Christen
2012, Chapter 3]:

• Improving data quality.

We need to smooth the noisy data and correct the inconsistent data to improve
the data quality. Noisy data does not supply useful information for the classifi-
cation task and may interfere with it. Conventional methods to clean noisy data
include the following:

– Correct spelling errors. For example, in the COD dataset, ”abscess” is
misspelled as ”absess”. One method is to use dictionaries to detect mis-
spelled words and correct them. If there are no proper dictionaries, for ex-
ample, when targeting proper noun database, including names, addresses
and special abbreviations, this issue can be dealt with through regression
or clustering approaches that replace all similar strings in a group by the
most frequent string or cluster centroid of this group. Mazeika and Bohlen
[2006] use inverse strings together with sampling to compute the centre of
a group of strings and the border of the group.

§2.4 Data mining Techniques Explored 13

– Remove unwanted characters and tokens. Unwanted characters and to-
kens refer to those elements which do not contain useful information for
data matching and classification. For example, punctuation marks, stop
words.

– Identify and correct inconsistent values. Same text description may be
manually coded into different classes. For example, human coding incon-
sistency appears in the OCC dataset, ”fireman” is classified into ”railway
steam-engine fireman”(37%), ”fire-fighters”(26%) and ”boiler fireman”(13%)
[Kirby et al. 2015]. The possible ways are to re-classify all ”fireman” into the
most popular one (”railway steam-engine fireman”) or discard all related
records. However, if we cannot make sure which one of those categories
is the correct one, then any change of original data may introduce further
mistakes rather than correct the data.

• Standardisation, tokenisation and stemming. Standardisation usually needs an
extensive look-up table which supplies standardised values for tokens. Tokeni-
sation assigns each token with one or more tags which specify the type of token.
Stemming is the process of reducing inflected (or sometimes derived) words to
their word stem, base or root form [Willett 2006]. For example, a stemming al-
gorithm reduces the words ”fishing”, ”fished”, and ”fisher” to the root word,
”fish”. Although stemming can reduce the dimensionality and dependence be-
tween terms, it also has been reported to reduce model performance [Baker and
McCallum 1998].

2.4.1.2 Feature Generation

A classification algorithm cannot directly process text documents, thus an indexing
procedure is needed to map a document into a representation format. There are two
typical choices for representation of documents: one is the meaningful units of text
(lexical semantics), the other one is the meaningful natural language rules for the com-
bination of these units (compositional semantics) [Sebastiani 2002]. More precisely, a
document di is represented as a vector of feature weights ~di = < wi1, ..., win >, where
n is the length of feature sets. Each feature occurs in at least one document. Different
approaches for feature generation will depend on two aspects [Sebastiani 2002]:

1. Features types.

A typical choice is the bag of words approach, where words are identified fea-
tures. For example, a text description ”heart disease” can generate two features
based on the bag of words approach: ”heart” and ”disease”.

More generally, the n-gram based indexing is considered. An n-gram is a con-
tiguous sequence of n items from a given text record. The items can be phonemes,
syllables, letters words or base pairs [Christen 2012]. Common choices for n are
n=1 (called unigram), n=2 (called bigrams or digrams) or n=3 (called trigrams) for
word level, character level respectively. A sliding window approach is used to

14 Background

extract n words or characters from string s at any position from 1 to the number
of grams. The extracted terms are called features. For example, the trigrams for
character level list for ”mengyan” is [’men’,’eng’,’ngy’,’gya’,’yan’].

Other approaches such as soundex (generating grams based on American-English
language pronunciation), canopy clustering (grouping similar records into the
same cluster), and mapping based indexing (string comparison methods needed)
are also valuable candidates for defining features [Christen 2012].

2. Term weights.

Different features have different level of importance in a textual corpus. The
term weights are used to represent the degree of importance of a feature. There
are several weighting methods commonly used.

• Binary. The binary weight of one feature is indicated by whether a feature
appears in a record.

• Term Frequency(TF). Use the term frequency t f t,d to represent how many
times a feature t appears in a record d.

• Document Frequency (DF). Use document frequency dft to represent how
many records containing a feature t. High document frequency indicates a
feature is not important, like stop-words (”and”, ”but”, etc.).

• Inverse document frequency(IDF). The IDF is the inverse of DF, which can
be defined as follows:

id ft = log
N
dft

, (2.1)

where N is the total number of records.

• TF-IDF. The weight TF-IDF combines TF and IDF, considering the degree
of importance in terms of both the feature frequency in a records and in the
whole corpus. The TF-IDF can be defined as follows:

t f − id f t,d = t f t,d × id f t. (2.2)

2.4.1.3 Feature Extraction: Dimensionality Reduction

After generating features and weights according to the degree of importance from the
textual corpus, feature selection and dimensionality reduction are generally consid-
ered to improve the classifier performance and provide faster and more cost-effective
classifiers [Guyon and Elisseeff 2003].

One major problem of text classification is having a large number of features. On
the one hand, some features contain irrelevant information that can mislead the clas-
sifier. On the other hand, large dimensionality can be high time and space complexity.

Recently in the area of text classification, researchers have explored feature selec-
tion methods to pick valuable features based on information gain, mutual informa-
tion, and so on [Uuz 2011; Yang and Pedersen 1997], and dimensionality reduction

§2.4 Data mining Techniques Explored 15

methods such as principal components analysis, projection pursuit, and independent
component analysis [Fodor ; Jolliffe 1986].

We will introduce one particular dimensionality reduction method, principal com-
ponents analysis (PCA), in more detail. The basic idea of PCA is to linearly project the
records onto a lower dimensional subspace such that the variance of the projected
data is maximized [Wold et al. 1987], where the variance measures how far a set of
numbers are spread out from their average value. Given N observations xn ∈ RD,
where n = 1,...,N; and some unit vector u1 ∈ RD satisfies u1

Tu1 = 1. Each data point
xn can be projected onto a scalar value u1

Txn. The variance of the projected data can
be expressed as:

1
N

N

∑
n=1
{u1

Txn − u1
T x̄}2

= u1
TSu1, (2.3)

where x̄ is the sample mean and S is the covariance matrix.
If we maximize the Equation 2.3, we can find the optimal projectors. Assume the

goal is to project N-dimensional data into M dimensions, the optimal projectors are
M eigenvectors u1, ..., uM of the covariance matrix S corresponding to the M largest
eigenvalues [Wold et al. 1987].

2.4.2 Classification

Classification is a supervised machine learning task in which pairs of data and target
labels are given. The goal of classification is to learn a mapping between the data and
label which generalizes well to new data, more specifically, to assign input data to one
of K discrete classes Ck where k = 1, ..., K. According to the number of classes K, the
classification tasks can be categorized into binary classification (K = 2), multi-class and
multi-label classification (K > 2).

For a text classification problem, a file containing text records with their labelled
classes will be converted into a N× (D + m) data matrix X, where each row is a tuple
{(xi, ci)

∣∣ xi ∈ X , ci ∈ Y , 1 ≤ i ≤ N} with D dimensional feature vector and m class
labels. X is the set of input feature vectors and Y is the set of class labels vectors. There
are some explanations for related concepts:

• record: also called data point or instance. xi = {xi1, xi2, ..., xiD} in each row is
called one record. The data matrix X totally has N records.

• feature: also called attribute. In machine learning, a feature is defined as ”an in-
dividual measurable property or characteristic of phenomenon being observed”
[Bishop 2006]. Each record has D dimensional features in the data matrix.

• label: also called class or code. Each record is assigned to m labels ci = {ci1, ci2, ...,
ci j..., cim|ci j ∈ C}, where C is the set of class labels.

For multi-class classification, each record corresponds with only one label (m =
1). For a multi-label classification problem, multiple labels can be assigned for one
record (m > 1). The type of classification tasks and corresponding methods to
solve these tasks are introduced in Section 2.4.2.1.

16 Background

• record-feature matrix: N × D matrix where each row is a record with D dimen-
sional features.

Generally, there are two phases for a classification problem: training phase and
testing phases. If only one input dataset is given, it will be separated into two or more
datasets for training and testing phases respectively. The separation methods will be
introduced in detail in Section 2.4.3.

1. Training phase: The goal of the training phase is to construct a classification
model, which can be viewed as a function f(x) that can predict the class label for
unobserved record x. The model is commonly called a classifier.

2. Testing phase: The goal of the testing phase is to predict labels for test (unob-
served) records using the trained model, then compare predicted labels with true
labels for test records to estimate the accuracy of the model. If the accuracy is
acceptable, we can use the model to classify new records.

2.4.2.1 Types of Classification Tasks

Classification tasks have different types in terms of the number of classes and how
many classes one record is assigned to. Figure 2.1 shows the types of classification
tasks.

Classification

Multi-Classification

Binary Classification

Multi-label Classification

Multi-class Classification

Figure 2.1: Type of classification.

According to the number of classes K, classification tasks include binary classifi-
cation (K = 2), multi-class and multi-label classification (K > 2). When K = 2, training
records are called positive records and negative records in general. When K > 2, if one
record is assigned to only one class, the task is called multi-class classification; other-
wise multi-label classification. We will introduce the standard methods for multi-class
and multi-label classification in following.

For multi-class classification, there are three general strategies [Aly 2005]:

• Transformation to binary.

We can reduce the multi-class classification problem to multiple binary classifi-
cation problems. The main approaches include one-vs.-rest and one-vs.-one.

§2.4 Data mining Techniques Explored 17

– one-vs.-rest: train K single classifiers, where one classifier for per class, with
the records of that class as positive records and all other samples as nega-
tives [Bishop 2006]. Let fi be the ith classifier, classify with:

f (x) = arg max
i

fi(x), (2.4)

– one-vs.-one: train K(K − 1) classifiers, where one classifier distinguishes
each pair of class i and j [Bishop 2006]. Let fi j be the classifier where records
for class i are positive and records for class j are negative. We classify with:

f (x) = arg max
i

(∑
j

fi j(x)). (2.5)

• Extension from binary.

We can extend existing binary classifiers to multi-class classifiers. For example,
naive Bayes, decision trees, support vector and neural networks have been de-
veloped to address multi-class classification problems [Rennie 2001; Takahashi
and Abe 2002; Anand et al. 1995].

• Hierarchical classification.

Multi-class classification can also be solved by dividing the output space into a
tree structure. Each parent node is divided into multiple child nodes and the
process is continued until each child node represents only one class [Kowsari
et al. 2017].

For multi-label classification problems, the most common method is the transfor-
mation method. The baseline of this method is called binary relevance method, where
one binary classifier is trained for each label independently. For an unobserved record,
the combined model then predicts all labels for the record where the respective clas-
sifier predicts a positive result [Read et al. 2011]. Other approaches involve adapted
algorithms, where the binary classification algorithms are adapted to the multi-label
tasks [Chen et al. 2003].

In summary, no matter whether it is multi-class classification or multi-label classi-
fication, the strategies are based on the basic binary classification algorithms. In next
section, we will introduce the popular binary (or extension multi-class version) classi-
fication algorithms for text classification problems.

2.4.2.2 Classifier Construction

The core aim of classification tasks is to build a robust classifier which can accurately
predict unobserved records. We explore several classifier construction algorithms
which are widely used in text classification [Joachims 1998; Kim et al. 2006; Lewis and
Ringuette 1994; Genkin et al. 2007], namely naive Bayes, logistic regression, support
vector machine and decision tree.

18 Background

• Naive Bayes:

A naive Bayes classifier is a probabilistic classifier which predicts the conditional
probability of a given record belonging to a particular class label. We first define
several concepts commonly used in Bayes’ Theorem:

– Evidence x: observed record which has D dimensions,

– Hypothesis H: a class label,

– Prior P(H): the a priori probability (Hypothesis) of H,

– Likelihood P(x|H): the conditional probability of observing the record x given
the hypothesis holds,

– Posterior P(H|x): the posteriori probability where the hypothesis holds given
observed record x.

According to Bayes’ Theorem [Stuart 1994]:

P(H|x) = P(x|H)× P(H)

P(x)
, (2.6)

which can be explained as,

Posterior =
Likelihood× Prior

Evidence
.

The Bayes classifier predicts one record xi belongs to one class label c j if the poste-
riori probability P(c j|xi) is the highest among all other P(ck|xi) for all K classes,
where k ∈ {1,..., K}.
To compute the Likelihood P(x|H), the naive Bayes classifier assumes class con-
ditional independence, which assumes each feature is conditionally independent
from all other features. The assumption can be expressed as Equation 2.7. Al-
though the class conditional independence is commonly not true since features tend
to have correlations with each other, it greatly reduces the computation cost and
the naive Bayes classifier can generally work well for text classification problem
based on this assumption [Kim et al. 2006],

P(xi|c j) =
D

∏
d=1

P(xid|c j)

= P(xi1|c j)× P(xi2|c j)× ...× P(xiD|c j).

(2.7)

For discrete features, each item P(xid|c j) in Equation 2.7 can be calculated by
the percentage of feature values’ occurrence. For continuous features, a binning
procedure can be used to make features discrete [Kotsiantis and Kanellopoulos
2005]. An alternative method is to assume feature distribution, where the com-
mon choices can be Gaussian distribution [John and Langley 1995], Multinomial
distribution [Murphy 2006] and Bernoulli distribution [Murphy 2006].

§2.4 Data mining Techniques Explored 19

The naive Bayes classifier is easy to implement and fast. It needs less training
data compared to some more complicated algorithms like Neural Networks [Lai
et al. 2015]. The classifier is also not sensitive to irrelevant features since the
irrelevant features are likely to give similar conditional probability if we have
enough data. However, the strong class conditional independence assumption may
have a negative influence on the performance in some cases.

• Logistic Regression:

Contrary to what the name suggests, logistic regression is not a regression prob-
lem but a probabilistic classification model which outputs the probability that a
given input record belongs to a certain class.

Equation 2.8 shows the logistic function (also called sigmoid function), which pro-
duces a logistic curve, which maps the numeric number into a value between 0
and 1. Figure 2.2 show the logistic function curve.

σ(z) =
1

1 + e−z =
ez

1 + e
(2.8)

−11−10−9−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 10 11
X Axi

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y
Ax

i

σ(x) = 1
1+ e−x

Logi tic Function

lin pace(-10,10,100)

Figure 2.2: Logistic function curve. The horizontal axis sample numeric number, and
the vertical axis is the corresponding logistic regression function value.

Equation 2.9 shows a linear model, whereφ(x) is some fixed feature space map-
ping and b is bias. Training data are N input vectors xi (1 ≤ i ≤ N) with
corresponding targets c j where c j ∈ {0, 1} for binary classification. y(x) can be
mapped to the range 0 to 1 using the logistic function by assigning z = y(x).

y(x) = wTφ(x) + b (2.9)

Thus, logistic regression maps a record x in D-dimensional feature space to a
value in the range between 0 to 1. Generally, if the mapped value is close to 1,

20 Background

the record x is predicted as c j = 1, otherwise, it is predicted as c j = 0.

To measure the performance of the prediction, the likelihood function can be
used to show the probability that a random record is correctly classified:

p(c|w) =
N

∏
i=1

yi
c j(1− yi)

1−c j , (2.10)

where yi = y(xi).

So the task of a logistic regression classifier is to maximize the (log) likelihood,
that is to maximize the probability that a new record will be correctly classified.
This task can be handled by using gradient descent-based methods [Meier et al.
2008], where first order derivative gives the direction the search should take.

• Support Vector Machine:

Support Vector Machine (SVM) is a classification method for both linear and
non-linear data [Gunn et al. 1998]. Non-linear data can be linearly separable in
a higher dimension, so a mapping method called Kernel Method can be used to
transform the training data into a higher dimension if the data is non-linear.

SVM then searches for a hyperplane (i.e. decision boundary) which can linearly
separate classes and minimize the classification error on unobserved data. We
define a margin as the smallest distance between the hyperplane and any of the
records. SVM searches for the hyperplane with the largest margin. The Support
vectors are defined as the training records that determine the largest margin hy-
perplane. Then for a binary classification task and the linear model defined as
Equation 2.9, the training data are N input vectors xi with corresponding label
ci ∈ {−1,+1}. We solve the maximum margin by Equation 2.11.

arg max
w,b
{ 1
‖w‖ min

i
[ci(wTφ(xi) + b)]}. (2.11)

SVM is effective on high-dimensional data, since it is the number of support vec-
tors rather than the dimensionality of the data that determines the complexity of
a trained classifier. The support vectors alone can generate the same hyperplane
without other training samples [Han et al. 2011]. However the training process
can be slow since finding support vectors consumes a great amount of time.

• Decision Tree:

A decision tree classifies the labelled data by applying a tree of logical tests on
features that partition the data into finer sets [Han et al. 2011]. We start with
the set of training records and split it according to some splitting rules at each
non-leaf node. The splitting process constructs a tree-like structure, in which the
root node and each internal node represent a test on one feature and each leaf
node holds a class label. Figure 2.3 shows a simple example of a decision tree
model.

§2.4 Data mining Techniques Explored 21

Weather?

Picnic Mood? Mood?

Sunny Rainy Windy

Reading Sleeping

Happy Sad

Picnic

Happy

Sleeping

Sad

Figure 2.3: Example of decision tree model. Yellow nodes represent tests on the fea-
tures Weather, Mood. Red nodes represent class labels Picnic, Reading, Sleeping.

The key point of decision tree model construction is the feature selection method,
which decides how to split data. Generally, we need to decide the order of fea-
tures to split on. Different splitting methods may result in different tree models.
For example, in example shown in Figure 2.3, we can construct a different deci-
sion tree model by firstly splitting on ”Weather” and then splitting on ”Mood”.
Notably, if an attribute is continuous, then a splitting point also needs to be se-
lected (normally using the midpoint).

The goal of feature selection method is to make each branch as pure as possible.
Popular methods to select the feature includes using the largest information gain
and smallest gini impurity, which will be described in more detail in Section 3.2.2.

Decision trees are a white box model and are easy to understand and interpret.
We can extract logic rules from decision trees, for example, one rule of the deci-
sion tree shown in Figure 2.3 is ”IF Rainy AND Happy THEN Reading”. How-
ever, it is often possible to have an over-complex decision tree that doesn’t gen-
eralize well to out-of-sample data, which is known as overfitting problem [Fox
2017]. Furthermore, a decision tree can be unstable since completely different
trees can be created due to small variations in the data.

22 Background

2.4.3 Evaluation

This section discusses how to evaluate classifiers. Firstly, several evaluation methods
are introduced, including holdout methods, train-validation-test model and cross-
validation. Following this, the evaluation metrics, such as precision and recall, are
summarised and compared.

1. Evaluation Method: Evaluation measures cannot be tested on the training data
because the classifier may be over-tuned for the training data. Thus when a
dataset is given, it needs to be split for training and testing phases. There are
several splitting methods:

• Holdout method. Split a given dataset into two datasets: a training dataset
for classifier construction and a testing dataset for evaluation.

• Training/Validation/Test. A variation of the holdout method where an addi-
tional validation dataset is generated. The validation set is used to find the
best parameter settings for the model.

• Cross-Validation. The dataset is split into k mutually exclusive subsets
D1, ...Dk, where each subset approximately has equal size. At the i-th it-
eration, we use Di for testing and the remainder for training. The overall
performance is measured by the average performance of each model on its
respective testing dataset.

2. Evaluation Metrics:

Several evaluation metrics are commonly used for classification, namely accu-
racy, error rate, sensitivity, specificity, precision, recall and F-measure [Han et al.
2011]. To define them, we first introduce the confusion matrix, which illustrates
how well a classifier can recognize records of different classes. Table 2.1 demon-
strates the case for binary classification. Columns indicate the ground truth of
class labels while rows represents the predicted class.

Total population Labeled Positive Labeled Negative
Predicted Positive True Positive (TP) False Positive (FP)
Predicted Negative False Negative (FN) True Negative (TN)

Table 2.1: Contingency table for binary classification

• True Positive (TP): the number of records which actually belong to the pos-
itive class and are classified correctly into the positive class.

• False Positive (FP): the number of records which actually belong to the neg-
ative class and are classified wrongly into the positive class.

• False Negative (FN): the number of records which actually belong to the
positive class and are classified wrongly into the negative class.

• True Negative (TN): the number of records which actually belong to the
negative class and are classified correctly into the negative class.

§2.5 Chapter Summary 23

Table 2.2 shows possible evaluation metrics and corresponding formula.

Measure Formula

Accuracy TP+TN
TP+TN+FP+FN

Error rate FP+FN
TP+TN+FP+FN

Sensitivity/Recall TP
TP+FN

Specificity TN
TN+FP

Precision TP
TP+FP

F-measure, where β ∈ [0, 1] 1
β 1

precision+(1−β) 1
recall

F1 2 · precision·recall
precision+recall

Table 2.2: Evaluation metrics

Accuracy indicates the percentage of correctly predicted records among all the
records. However, accuracy is not suitable for imbalanced class problems. Sim-
ply predicting all records to the majority class label can lead to a good accuracy.
Error rate is the opposite case of accuracy, showing the percentage of wrongly
predicted records among all the records. For the same reason, Error rate is not
suitable for imbalanced class problems. In this case, the sensitivity and specificity
can be used to measure the correctly predicted records for the positive class and
negative class respectively.

Precision and recall were originally developed for information retrieval [Larson
2009] and have been widely used in classification evaluation. Precision is a way
to measure exactness, which is the percentage of records classified as belonging
to the positive class that actually belong to the positive class. Recall is a way to
measure completeness, which is the percentage of records labelled as positive
class that are classified as positive.

F-measure is the trade-off between precision and recall. For the special case when
β = 0.5, F1 is the harmonic mean of precision and recall.

2.5 Chapter Summary

In this chapter, we first introduced the general social science background for histori-
cal administrative data classification in Section 2.1. Following this, the structure and
characteristics of historical coding systems for both of the COD and OCC datasets
were demonstrated in Section 2.2.

Two related works ([Carson et al. 2013] and [Kirby et al. 2015]) were closely re-
viewed in Section 2.3. Based on critically analysing these studies, we identified several
key directions for our research. For example, Carson et al. [2013] showed the machine
learning approaches were more suitable for the historical text classification problem

24 Background

than other approaches, which provided a rationale and motivation to further explore
machine learning approaches in this research project.

Following this, the general data mining techniques for text classification were dis-
cussed in Section 2.4. The main pipeline includes data pre-processing, classification
and evaluation. Four classifiers were studied in detail, namely naive Bayes, logistic
regression, support vector machine and decision tree.

In the next chapter, we will introduce the methodologies we used for the historical
coding classification problem.

Chapter 3

Methodology

The main processes of classification of a historical coding system are data pre-processing,
training a classifier and evaluation, which is shown in Figure 3.1. The blue boxes show
detailed sub-steps of each part and we will describe the used methodologies in this
chapter and evaluate them in Chapter 4.

Data pre-processing Classification Evaluation

Data cleaning
Feature generation

Dimensionality reduction

Naive Bayes,
Logistic Regression,

Support Vector Machine,
Decision Tree, etc

Input
data

Precision
Recall

F-measure
Accuracy

Coding
Results

Figure 3.1: Historical coding classification process

3.1 Data pre-processing

Text data collected from real-world applications is often non-standard, inconsistent,
sparse and contains errors, which largely influences the classification performance.
Data pre-processing plays an indispensable role in solving such issues, where the aim
is to clean the raw data and transform it into a matrix format that can be used to train
a classifier.

The data pre-processing pipeline in this thesis includes three main Steps: data
cleaning, feature generation (character and word n-grams) and feature extraction (di-
mensionality reduction). The historical COD and OCC datasets collected from Scot-
land have low data quality, including misspellings, inconsistency and non-standard
descriptions. The data cleaning approach, including general cleaning, spelling correc-
tion and inconsistency correction, can increase the data quality to some extent. The

25

26 Methodology

cleaned datasets can then be used for generating features, and a record-feature matrix
can be built based on those generated features, where rows represent text records and
columns are corresponded to features. Due to the sparseness of the data and varia-
tions of features, the generated record-feature matrix have a high dimension. Dimen-
sionality reduction methods can be used for such situations to project useful features
into some lower dimensional space, which may play a role in reducing computational
time and increase classification performance. Each step of data pre-processing will be
described in more detail in Sections 3.1.1 to 3.1.3.

3.1.1 Data cleaning

The goal of data cleaning is to improve the data accuracy and quality. A classifier
learns the characteristic of classes based on the input data, and low quality data can
directly lead to bad classification performance. So effective data cleaning is the foun-
dation of the whole classification process.

Based on the study of previous work on data cleaning [Christen 2012; Mazeika and
Bohlen 2006], which is discovered in Section 2.4.1.1, we choose to clean our historical
text data by applying general cleaning (removing unwanted characters, stemming,
etc.), spelling corrections, and inconsistency corrections.

1. General Cleaning.
The purpose of general cleaning for raw data is to remove useless information.
These noisy information can interfere the classification process and decrease a
classifier’s performance accuracy. We consider the following steps to conduct
general cleaning:

• Removing punctuation:
Punctuation (such as comma, semicolon, etc.) generally do not contain any
useful information, so we use a white-space to replace them.
But a particular case for our data is that some punctuation like ”&” and ”;”
can be used as indicators for separating several causes of death. For exam-
ple, ”&” in the COD description ”british cholera & infantile diarrhoea” can
separate the two causes ”british cholera” and ”infantile diarrhoea”. If we
just remove those punctuation we will mix up multiple causes’ information
and never be able to separate them if we need to. One alternative way is to
use ”and” to replace ”&”.

• Handling white-spaces:
Unlike punctuation, white-spaces might be useful since we can use white-
spaces to split input strings into tokens. For example, we can split ”heart
disease” by white-space into [”heart”,”disease”].
However, if there are multiple white-spaces between tokens or at the be-
ginning or ending of a string, these white-spaces will also be extracted in
features and provide useless information. For example, if one record is ”

heart disease” (where ” ” represents one white-space, that is there are

§3.1 Data pre-processing 27

two leading spaces and two spaces between tokens), the generated bigram
character level features can be [” ”, ” h”, ”he”, ”ea”, ”ar”, ”rt”,”t ”, ”
”,” d”, ...], where white-spaces in ” ” and ” h” would be noise informa-
tion.

So instead of removing all white-spaces, we remove all leading and tailing
white-spaces and double and triple white-spaces between tokens.

• Removing stop-words:

Stop-words are defined as commonly and frequently used words that a
classifier can ignore [Leskovec et al. 2014], such as ”the”, ”that”, ”of”, etc.
These kinds of words are included in many text records and thus do not
contain useful information expressing the characteristic of classes. Remov-
ing stop-words can decrease the degree of data noisy.

Besides using a list supplied by the Natural Language Toolkit (NLTK) in
Python [Loper and Bird 2002], we also tried a frequency-based approach,
where if a token occurs in more than a certain percentage of all unique
records, then we will regard the token as a stop-word. Since we think some
frequently occurring words which are not in the NLTK stop-words list may
also be noisy, such as ”disease” for the COD dataset.

However, how to decide whether a frequency word can be removed tends
to be tricky. For example, removing frequently used words may not be
suitable in a situation where text records are only several nouns rather than
narrative descriptions. In the OCC dataset, ”clerk”, ”labourer” occurs more
frequently than words like ”of”. It is inappropriate to regard those words as
stop-words and remove them since they may be the only word to describe
a certain occupation class in one record.

• Stemming:

Stemming is the process of converting words to their stem, base or root
form by removing the derivation affixes [Willett 2006]. The returned stem
is not necessarily to be the morphological root of a word. For example,
”ponies” will be converted to ”poni” rather than ”pony”.

In our dataset, text descriptions use different forms of a word, such as ”dis-
ease” and ”diseases”, which will become different features if we use ”bag
of words” to generate features, which is inappropriate since they provide
the same information. Stemming can tackle this problem by unifying the
different forms into their root form ”disease” and reduce the number of
unique features.

2. Spelling correction.

After the general cleaning process, text records are now free of unwanted char-
acters, including punctuation, stop-words and useless spaces. But there are still
some misspellings which also have a negative influence on the classification per-
formance.

28 Methodology

Frequent string set
Infrequent string set

disease
12

....
...heart

10
heard

2
diseas

1 For each infrequent string,
correct it to its most similar

frequent string
hear

1

Figure 3.2: Frequent and infrequent set example. Strings are given with the frequency
count with a frequency threshold 5.

Although spelling correction has been widely used for automatically writing
check [Kukich 1992; Gail et al. 2016], we still face challenges dealing with clean-
ing misspellings for our historical dataset. On the one hand, we expect a spelling
correction algorithm can detect which word is misspelled and then correct it
without any manual feedback. On the other hand, since historical datasets,
like our COD dataset, include many non-standard abbreviations and semanti-
cal phrases, a dictionary-based approach is not suitable. For example, if ”heart
disease” is misspelled as ”heard disease”, it could be challenging to detect the
misspelled word ”heard” because it is itself a meaningfully correct word.

To deal with such issues, we use a similarity-based approach to replace po-
tential misspellings into their most similar string [Wagner and Fischer 1974].
We assume the potential misspellings tend to occur less often than the correct
spellings. We can separate the input strings into a frequent set and an infrequent
set according to a user-defined minimum frequency threshold. The strings in the
infrequent set are potential misspellings while the strings in frequent set are as-
sumed to be correctly spelled ones. Then for each word in the infrequent set, we
correct it to its most similar word in the frequent set, if the similarity between
them is larger than a user-defined similarity threshold. The parameter choices of
similarity and frequency threshold are explored in Section 4.2.

Figure 3.2 shows the example for frequent and infrequent set. The world ”heard”
only occurs twice since it is misspelled by accident, and we put it into the in-
frequent set due to its low frequency. After calculating the similarity between
”heard” and all others strings in the frequent set, the word ”heart” turns out to
be the most similar one and their similarity is larger than the similarity threshold
so that we can correct ”heard” to ”heart”.

§3.1 Data pre-processing 29

The next major question then is how we can calculate the similarity between
strings. There are many existing string matching techniques that can be used to
calculate the similarity between strings [Christen 2006]. We choose two of them
which have been shown to work well for matching short strings [Kukich 1992;
Schulz and Mihov 2002]:

• Edit Distance:
The edit distance measures the dissimilarity of two strings by counting the
minimum number of operations (insertion, deletion and substitutions) re-
quired to transform one string into the other [Wagner and Fischer 1974].
The similarity of two strings then can be calculated by

sim(s1, s2) = 1.0− dist(s1, s2)
max(|s1|, |s2|)

, (3.1)

where dist(s1, s2) is the returned value by the edit distance function with
0 ≤ dist(s1, s2) ≤ max(|s1|, |s2|)

• Longest common sub-string (LCS):
LCS repeatedly finds and removes the longest common sub-string in the
two compared strings, up to a minimum length [Friedman and Sideli 1992].
For example, if we set minimum common sub-string length to 2 characters,
”heart disease” and ”heard disease” have a longest common sub-string
” disease” (including the white-space). After it is removed, the two new
strings are ”heard” and ”heart”. In the second iteration, two strings have
common sub-string ”hear” and it is removed, leaving ”d” and ”t”. The to-
tal common sub-string length is 12 (also counting the white-space). The
similarity of two strings can be normalized by,

sim(s1, s2) =
LCS(s1, s2)

ave(|s1|, |s2|)
, (3.2)

where the denominator can also be the minimum or maximum length of
two original strings [Christen 2006].

The algorithm of spelling correction is showed in next page as Algorithm 1. The
parameter choices of similarity and frequency threshold can be crucial for the
correction accuracy, we will show experiments for different parameter choices
in Section 4.2.

30 Methodology

Algorithm 1 Spelling correction.

Input: T is the input text file general cleaned;
fmin is the frequency threshold used for separating input strings into two sets;
smin is the similarity threshold used for determining whether an infrequent

string can be corrected to its most similar frequent string;
simm (s,s’) is the function that returns a similarity score between string s and

s’ using string matching methods m.
Output: A new file where text strings are cleaned.

1: Initialize frequent set SF = {}, infrequent set SI = {}
2: Read T and initialize a set S, for all unique strings s and their counts c, (s, c) ∈ S
3: for (s, c) ∈ S do
4: if c > fmin then SF = SF

⋃{s}
5: else SI = SI

⋃{s}
6: end if
7: end for
8: for si ∈ SI do
9: smax = 0, sreplace = ””

10: for s f ∈ SF do
11: if simm(si, s f) > smax then smax = simm(si, s f), sreplace = s f
12: end if
13: end for
14: if smax > smin then correct all occurring si with sreplace
15: end if
16: end for
17: Generate New File with spelling correction
18: return New File;

3. Inconsistency correction.

In both of the COD and OCC datasets, the same text description in different
records may be labelled as different class labels (codes) due to the human coding
inconsistency. For the inconsistency coding example refer to Section 4.1.

Coding inconsistency brings noise into the classification. We expect one cause
of death or occupation title can be coded into one standard class if it does not
belong to multiple meaningfully different classes. When we observe an incon-
sistent coding in our dataset, we find that the different labels assigned to each
text descriptions have very similar meanings. From example, records with oc-
cupation title ”dairyman” are 75% coded into ”Livestock Worker, Specialisation
Unknown” (6-24.00) and 21% coded into ”Livestock Farmer” (6-12.40). The two
class labels are very similar and it is unreasonable to keep both labels for one
occupation title.

We adopt the approach to alter all labels for multiple-coded descriptions to the
most frequent one. For example, for all records with ”dairyman”, we re-code
them into the most frequent label ”Livestock Worker, Specialisation Unknown”

§3.1 Data pre-processing 31

(6-24.00). The rationale is we assume that the most frequent coding is the correct
one and the others are human coding mistakes.

We only do the inconsistency correction for the OCC dataset. One reason is
that in the COD dataset, the multiple-coding descriptions are rare (0.03% of all
unique descriptions). Another reason is that, the structure of the COD testing
dataset and OCC dataset is different (refer to Section 1.2 for detail). In the COD
testing dataset, one record is coded into multiple labels, which means multi-
ple coding for unique descriptions may not influence the classification accuracy.
Furthermore, multiple coding may be reasonable for COD descriptions. Since
one cause of death could belong to different medical categories, especially when
the coders have additional context available. But occupation titles, on the oppo-
site, are more likely to belong to one category.

So far, the raw input data has been cleaned from unwanted characters, misspellings
and inconsistent values. The next step is to generate features from the cleaned text
dataset, which will be introduced in the next section.

3.1.2 Feature Generation

The aim of feature generation is to produce a record-feature matrix which can be used
by the classification process, where for each input record a list of features is gener-
ated and where weights of features are represented in columns. Three steps for the
feature generation processes are applied, namely generate features, calculate feature
weights and build record-feature matrix. We will show these three steps in detail in the
following.

1. Generate features.

This step aims to generate features from the cleaned input text. The n-gram (also
called q-gram) based approach is explored in our project, which uses a sliding
window approach to extract sub-strings of a certain size. According to the type
of substrings, the n-grams approach can be at word-level and character level. Ac-
cording to the length of features, there are unigrams (n=1), bigrams (n=2) and
trigrams (n=3) as common choices. Apart from the basic n-grams approach, We
also applied the skip-grams approach [Guthrie et al. 2006]. As its name suggests,
features are generated by skipping some characters. For our experiments, we
only use skip grams for character level bigrams.

We will show some examples to explain how features are generated by the n-
gram based approach. Using the text record ”heart disease” as an example, word
level unigram generates the features [”heart”, ”disease”], character level tri-
grams generates the features [”hea”, ”ear”, ”art”, ”rt ”,”t d”, ” di”, ”dis”, ”ise”,
”sea”, ”eas”, ”ase”], and 1-skip character level bigrams are [”ha”,”er”,”at”,”r ”,
”td”,” i”,”ds”,”ie”,”sa”,”es”, ”ae”].

32 Methodology

Type Explanation Example: ”gen deb and old age”
w1 Word level unigram [”gen”, ”deb”, ”and”, ”old”, ”age”]
w2 Word level bigrams [”gen deb”, ”deb and”, ”and old”, ”old age”]
w3 Word level trigram [”gen deb and”, ”deb and old”, ”and old age”]
q1 Char level unigram [”g”, ”e”, ”n”, ”d”, ”b”, ”a”, ”o”, ”l”]
q2 Char level bigrams [”ge”, ”en”, ”n ”, ” d”, ”de”, ”eb”, ”b ”, ” a”,

”an”, ”nd”, ”d ”, ” o”, ”ol”, ”ld”, ”ag”]
q3 Char level trigrams [”gen”, ”en ”, ”n d”, ” de”, ”deb”, ”eb ”, ”b a”,

” an”, ”and”, ”nd ”, ”d ”]
s1 Skip one character [”gn”, ”e ”, ”nd”, ” e”, ”db”, ”ba”, ” n”, ”ad”,

”n ”, ”do”, ” l”, ”od”, ”l ”, ”da”, ” g” ”ae”]
s2 Skip two characters [”g ”, ”ed”, ”ne”, ” b”, ”d ”, ”ea”, ”bn”, ” d”,

”a ”, ”no”, ”dl”, ”o ”, ”la”, ”dg”, ” e”]

Table 3.1: Individual feature types and examples. Empty feature (white-space gener-
ated by ”q1”) is deleted. Skip grams are based on character level bigrams.

There are two cases where empty features or feature lists can be generated. First,
if ”q1” (character level unigram) feature type is used, white-space between to-
kens can be generated as one empty feature. Second, if the feature length is
longer than the string length, then the feature list for the string is empty. For
example, if one string only has two words and word level trigram is used, then
feature list for the string is empty. For both cases, we delete the empty feature
or feature list, since it will not supply any useful information for classification.

For the character level approach, we also pad strings before generating features by
adding (n-1) special characters to the start and end of the strings. For example,
when using bigrams, ”heart” can be padded to ”*heart*”, resulting in features
[”*h”, ”he”, ”ea”, ”ar”, ”rt”, ”t*”]. The padding approach allows the beginning
and ending characters to be included as features. Empirical results [Keskustalo
et al. 2003] showed that the padding approach could increase string matching
quality.

For experimental evaluation, we experiment with individual feature types and
their combinations. Table 3.1 describes the individual feature choices. Combi-
nations can be any number of any features’ combination (e.g. [w1,q2]).

The intuition for testing different features includes two main aspects. One is that
we want to figure out whether there are patterns between feature types and code
frequencies/text lengths. For example, it is naturally to think that word level
features may lead to better class performance for long text length while character
level features may be better suited short text lengths. The second intuition is
that we want to find out which feature types lead to better performance for
our historical datasets (and more generally for short text and imbalance class
classification problem).

§3.1 Data pre-processing 33

ID Text Features (TF)
685 old old age old (2), age (1)
1048 bron bron (1)
6073 age age (1)
6105 con con (1)
6110 con con (1)
11735 gen deb gen (1), deb (1)
11476 deb birth deb (1), birth (1)
14492 old age deb old (1), age (1), deb (1)

Table 3.2: Sample COD records with term frequency. The second column shows
cleaned COD records, the third column shows the extracted word level unigram fea-
tures and corresponding term frequency (feature count in the record).

2. Calculate feature weights.

Different features have different the degree of importance of expressing class
characteristics. Generally, features that occur more often in record r but less
often in all other records tend to have the higher degree of importance for record
r. As mentioned in Section 2.4.1.2, we can use feature weights to represent the
degree of importance, which mainly includes binary, term frequency (count),
document frequency and TF-IDF. Refer to Section 2.4.1.2 for details. For our
experiments we choose to use TF-IDF to weight features since it has been shown
to work better than simple term frequency or binary approach [Joachims 1996].

To demonstrate an example for the TF-IDF weight of word level unigram fea-
tures, we pick a set of sample COD records and calculate the term frequency (TF)
and inverse document frequency (IDF) respectively, based on Equations 2.1. Ta-
ble 3.2 shows the cleaned text records with the word level unigram features
and their corresponding term frequency. Table 3.3 shows the inverse document fre-
quency for each feature extracted from the sample records. Then TF-IDF for each
feature in each record can be calculated by multiplying TF and IDF (Equation
2.2), which is demonstrated in Table 3.4.

From the above example, we can see the TF-IDF weight measures the impor-
tance of a feature according to two aspects:

• How often does a feature occur in one record? The more often A feature
occurs in the record, the more important the feature is for this record.

• How often does a feature occur in all records? The less often a feature
occurs in all records, the more important the feature is for all records in-
cluding it.

34 Methodology

Feature DF IDF
old 2 0.602
age 3 0.426
bron 1 0.903
con 2 0.602
gen 1 0.903
deb 3 0.426
birth 1 0.903

Table 3.3: Document frequency (DF) and inverse document frequency (IDF) example.
The first column is each feature extracted from the sample records in Table 3.2. DF
refers to document frequency (total count of one feature in all records). IDF represents
inverse document frequency, which is calculated by log10

N
DF , where N is the total

number of records. We keep three digits for IDF weights.

ID Text Features (TF-IDF)
685 old age old (0.124), age (0.426)
1048 bron bron (0.903)
6073 age age (0.426)
6105 con con (0.602)
6110 con con (0.602)
11735 gen deb gen (0.903), deb (0.426)
11476 deb birth deb (0.426), birth (0.903)
14492 old age deb old (0.602), age (0.426), deb (0.426)

Table 3.4: TF-IDF example. The second column shows cleaned COD records, the third
column shows the extracted word level unigram features and corresponding TF-IDF
(calculated by multiplying TF and IDF).

3. Build record-feature matrix.

Once we get features and their corresponding weights from an input dataset, we
can build an N × D record-feature matrix. Each row of the record-feature matrix
is a feature vector where each dimension corresponds to a separate feature and
represented by a feature weight.

Using the sample record shown in Table 3.2, we show the record-feature matrix in
Table 3.5. As mentioned, the record-feature matrix is based on word level unigram
features and TF-IDF weights.

We can see that the matrix is sparse (many feature weights are zeros) since most
of the words only occur in a small number of records. In this case, a large num-
ber of records may generate a very high dimensional and sparse matrix. In the
next section, we will discuss the problems high dimensional data brings and
how we use dimensionality reduction techniques to address these problems.

§3.1 Data pre-processing 35

ID old age bron con gen deb birth
685 0.602 0.426 0.0 0.0 0.0 0.0 0.0
1048 0.0 0.0 0.903 0.0 0.0 0.0 0.0
6073 0.0 0.426 0.0 0.0 0.0 0.0 0.0
6105 0.0 0.0 0.0 0.602 0.0 0.0 0.0
6110 0.0 0.0 0.0 0.602 0.0 0.0 0.0
11735 0.0 0.0 0.0 0.0 0.903 0.426 0.0
11476 0.0 0.0 0.0 0.0 0.0 0.426 0.903
14492 0.602 0.426 0.0 0.0 0.0 0.426 0.0

Table 3.5: 8× 7 Record-feature matrix, where each row represents each record (identi-
fied by ID), and columns are features. The numeric number for each row and column
shows the TF-IDF weight for each feature in each record.

3.1.3 Dimensionality Reduction: Principal Component Analysis

Experimental results in Section 4.2 show that introducing more feature types tend to
increase the performance accuracy of classifiers for our short text data. Among all in-
dividual and combination of feature types, the combination ”q2, q3, w2, w3, s1” gives
the best performance for 21.6% of all codes in COD dataset, which is much higher than
individual feature types. The reason behind this may be that more features can supply
more information about the records, especially when the text description is short.

However, a combination of many feature types may result in a high dimensional
record-feature matrix. For example, the combination ”q2, q3, w2, w3, s1” generates
9,902 unique features for the COD dataset, which is much higher than only using the
”w1” feature type (1,345 dimensions).

High dimensional data can bring two main problems for the classification task.
First, we may face the curse of dimensionality problem, which describes ”the problem
caused by the exponential increase in volume associated with adding extra dimen-
sions to Euclidean space” [Bellman 2013]. Informally, the behaviour of data structures
and algorithms in low dimensions may not generalize well in higher dimensional
space [Keogh and Mueen 2017]. Second, when the dimension becomes higher, the
computation costs are likely to be higher. For a large amount of data and real-world
applications, computation time can be crucial.

To address these problems, we use the principal component analysis (PCA) al-
gorithm to reduce dimensions. As introduced in Section 2.4.1.3, PCA projects high
dimensional data into a lower dimension space where the variance of the projected
data is maximized [Wold et al. 1987]. PCA selects the largest eigenvalues of the co-
variance matrix of an input matrix as components. As the name suggests, PCA allows
us to analysis only principal components, which explained most of the variance of the
input data, rather than analysing the whole dataset. This allows useful information to
be expressed and computed in a more compact way.

36 Methodology

0 200 400 600 800 1000 1200 1400 1600
components

0.000

0.005

0.010

0.015

0.020

0.025

ex
pl
ai
ne

d
va

ria
nc

e
ra
tio

Figure 3.3: Explained variance ratio for PCA (COD dataset, using ”q2, q3, w2, w3, s1”
features and TF-IDF weights). The horizontal axis is the selected number of compo-
nents, the vertical axis is the percentage of explained variance. The whole selected
components (around 1,600) can explain 99% of the amount of variance for the original
data. The first 200 selected components explained the most of variance.

Figure 3.3 shows the percentage of variance expressed by each of the selected com-
ponents. The figure shows information about the number of components such that
99% percent of the amount of variance is explained. From the figure we can see that
around 1,600 components can explain 99% percentage of the amount of variance of
a 9,000-dimensional data space, among which, most of the variance is explained by
first 200 components. This suggests that we can reduce a large number of dimensions
without losing much variance expressed by the original data.

Using PCA to pre-processing data may have different influences on the classifica-
tion performance in terms of the nature of the data and classifiers. PCA emphasizes
valuable features and ignores noise, which can help a classifier to concentrate on use-
ful information and increase the accuracy to some extent. However, when projecting
data to lower dimensions, some original information can be lost or distorted, which
may also have a negative influence on the classification performance. So whether the
PCA increases or decreases the performance depends on the nature of the data and
the noise-tolerance of the classifier.

One of the major questions for implementing PCA is how to select the number of
components to get a trade-off between accuracy and computation cost. Generally, the
fewer components are selected (i.e. fewer remaining dimensions), the lower the com-
putational costs, but at the same time, the lower the accuracy. We conduct an exper-
iment to compare the performance and computational time when different numbers
of components are selected and describe how to make a best choice for the number of
components, which will be demonstrated in Section 4.2.

§3.2 Classification 37

3.2 Classification

In Section 3.1, we illustrate how we pre-process the noisy, sparse text input records
into a cleaned, compact record-feature matrix. The next step is to construct a classifi-
cation model which can learn from the record-feature matrix and predict unobserved
records accurately. In this section, we will firstly introduce how we deal with the
multi-class and multi-label classification problems. Then we will illustrate the classi-
fier algorithms we used.

3.2.1 Multi-class and Multi-label Classification

Before we construct classifiers, it is essential to figure out what type of classification
algorithm suits the problem we need to solve with. In this section, we will briefly
analyse the structure of our historical datasets and then introduce the strategies we
adopt to deal with the classification task.

For both COD and OCC dataset, we have more than two classes (codes), which
means our tasks of classifying historical datasets are multi-class or multi-label classi-
fication problems. The type of classification tasks and corresponding strategies have
been introduced in Section 2.4.2.1.

Before showing the strategies we adopted to tackle the multi-class and multi-label
classification tasks, we first introduce the record-code matrix generated by the training
and testing records. Similar as the record-feature matrix, we build a N × K record-code
matrix, where N is the total number of records and K is the number of classes (codes).
Each row of the matrix represents one record and each column represents one class
label. Label all classes assigned for each record as 1 in the matrix, otherwise label
them as 0. Figure 3.4 shows an example of building the record-code matrix using a
sample COD training dataset.

Training dataset

Id Code

418 R99.01

785 A37.90

790 A37.90

2333 K31.94

Id R99.01 A37.90 K31.94

418 1 0 0

785 0 1 0

790 0 1 0

2333 0 0 1

Build record-code matrix

Record-code matrix

Figure 3.4: Example of record-code matrix. The left table shows a sample extracted
from the COD training dataset (for simplicity, only ID and Code two columns are
shown). The right table shows the record-code matrix generated from the left table.
Binary values are used to show whether a code is labelled for one record.

38 Methodology

• The COD dataset:

The nature of classifying cause of death task is multi-label classification. In the
training dataset, each record is assigned one label, while in the testing dataset
each record is assigned more than one (up to four) labels. Furthermore, in the
training dataset, the cause of death description usually contains only one cause.
For example, record 785 is one cause ”hc” with code ”A37.90”. In the testing
dataset, cause descriptions usually contain multiples causes, separated by num-
ber, & or ”;”, where each cause corresponds to one labelled code. For example,
record 2848 is ”both flu; syncope” with code ”J11.10” and ”R55.00”. So the task
is to classify unobserved records with multiple causes and labels, given training
records with single cause and label.

We adopt the transformation method for classifying COD records, which con-
verts the multi-label classification into multiple binary classifications. Consider-
ing our COD training and testing datasets have different structures, where train-
ing dataset is one-labelled and the testing dataset is multi-labelled, we trained
one classifier for each code and predict all labels for each unobserved record
with every classifier predicts a positive result.

Algorithm 2 shows the process of training classifiers and evaluation, where
Steps 4 to 23 train one classifier for one code and evaluate it on testing file. For
one code c, Step 5 trains the classification model using the training record-feature
matrix and a code vector which represents whether each training record belongs
to c or not, Step 6 returns a predicted code vector showing whether each testing
record belongs to c or not, Steps 8 to 20 evaluate the predicted results for c on
each testing record. As a result, each testing record can be predicted to multiple
labels by multiple classifiers. The evaluation methods used in this project will
be introduced in more detail in Section 3.3.

• The OCC Dataset:

The nature of classifying occupation titles is a multi-class classification. For the
OCC dataset, only one dataset is given, in which each record is manually coded
into one label. For example, record 4849 could be ”bricklayer” with code ”9-
51.20”. We split the dataset into training and testing dataset after doing the data
pre-processing.

We adopt one transformation strategies called ”one vs. rest”, which train one
classifier for one class and classify the unobserved record with the maximum
score of all classifiers. The algorithm for classifying OCC dataset (shown in Al-
gorithm 3) is similar as Algorithm 2. The difference is that, instead of directly
predicting label for testing records using each classifier, we predict class log-
probabilities (Step 6). Then among the log-probabilities for record r predicted
by all classifiers, we pick the label with the maximum log-probability as the
predicted label for test records (Steps 10 to 19). So as a result, each record is
predicted to one label only.

§3.2 Classification 39

Algorithm 2 Classification for COD.

Input: Training File, containing three columns: ”id”, ”cause”, and ”code”.
Testing File, containing six columns: ”id”, ”cause”, ”code1”, ”code2”, ”code3”,

and ”code4”.
Classifier C with train() and predict() functions.
Evaluation Function evaluate() to get precision P, recall R, F-measure F for

each code.
Output: Evaluation result for each code and overall performance for testing file.

1: Generate train feature matrix (Mtr f), train code matrix (Mtrc), and train code id Set Str
from training file.

2: Generate test feature matrix (Mte f), test code matrix (Mtec), and test code id Set (Ste)
from testing file.

3: Initialise array for precision, recall and F-measure Ap = [], Ar = [], A f = []
4: for cid ∈ Str

⋂
Ste do

5: C.train(Mtr f , Mtrc[:, cid])
6: Predict list = C.predict(Mte f)
7: Initialise True Positive TP=0, True Negative TN=0, False Positive FP=0, False

Negative FN=0.
8: for record id rid in test file do
9: Predict label = Predict list[rid]

10: True label = Mtec[rid, cid]
11: if Predict label == 1 and True label == 1 then
12: TP = TP + 1
13: else if Predict label == 1 and True label == 0 then
14: FP = FP + 1
15: else if Predict label == 0 and True label == 1 then
16: FN = FN + 1
17: else if Predict label == 0 and True label == 0 then
18: TN = TN + 1
19: end if
20: end for
21: P, R, F = evaluate(TP, FP, FN, TN)
22: Ap.append(P), Ar.append(R), A f .append(F)
23: end for
24: Calculate mean µ and standard deviation σ for Ap, Ar, A f
25: return Ap, Ar, A f ,µ,σ

40 Methodology

Algorithm 3 Classification for OCC.

Input: Training File, Testing File split from one input file which contains ”id”, ”occu-
pation title”, ”code” (three columns).

Classifier C with train() and predict() functions.
Evaluation Function evaluate() to get precision P, recall R, F-measure F for

each code.
Output: Evaluation for each code and overall results for testing file.

1: Generate train feature matrix (Mtr f), train code matrix (Mtrc), and train code id Set
(Str) from training file.

2: Generate test feature matrix (Mte f), test code matrix (Mtec), and test code id Set (Ste)
from testing file.

3: Initialise array for precision, recall and F-measure Ap = [], Ar = [], A f = []; hash
table Hp for predicted class log probability.

4: for cid ∈ Str
⋂

Ste do
5: C.train(Mtr f , Mtrc[:, cid])
6: Predict prob list = C.predict(Mte f)
7: Hp.insert(cid, Predict prob list)
8: end for
9: Initialise array for predict label Apredict = [].

10: for record id rid in test file do
11: Maxpro = 0, Maxcid = 0
12: for cid in Hp.keys() do
13: if Hp.get(cid)[rid] > Maxpro then
14: Maxpro = Hp.get(cid)[rid]
15: Maxcid = cid
16: end if
17: end for
18: Apredict.append(cid)
19: end for
20: for cid ∈ Str

⋂
Ste do

21: Initialise True Positive TP=0, True Negative TN=0, False Positive FP=0, False
Negative FN=0.

22: for record id rid in test file do
23: Predict label = Apredict[rid]
24: True label = Mtec[rid, cid]
25: if Predict label == 1 and True label == 1 then TP = TP + 1
26: else if Predict label == 1 and True label == 0 then FP = FP + 1
27: else if Predict label == 0 and True label == 1 then FN = FN + 1
28: else if Predict label == 0 and True label == 0 then TN = TN + 1
29: end if
30: end for
31: P, R, F = evaluate(TP, FP, FN, TN)
32: Ap.append(P), Ar.append(R), A f .append(F)
33: end for
34: Calculate mean µ and standard deviation σ for Ap, Ar, A f
35: return Ap, Ar, A f ,µ,σ

§3.2 Classification 41

3.2.2 Classifier construction

One of the most important part of Algorithms 2 and 3 is how to build the classifier
C. In this section, we will introduce the choices of classifiers in our project and corre-
sponding parameter choices. The detailed explanation for each classifier is mentioned
in Section 2.4.2.2. We implement the classification algorithms using Scikit-learn library
in Python [Pedregosa et al. 2011].

• Naive Bayes: we use multinomial naive Bayes, which is one of the classic Bayes
variants used in text classification. The distribution is parametrized by vector
θc = (θc1, ...,θcD) for each class c, where D is the number of features and θci
is the probability P(xi|c) of feature i appearing in a record belonging to class c
[Pedregosa et al. 2011].

A Laplace smoothing is used for calculating θci,

θ̂ci =
Nci +α

Nc +αn
, (3.3)

where Nci is the number of times feature i occurs in a record assigned to class c
and Nc is the total count of Nci for all features for c.

α is the smoothing prior, adding the features not presented in training records
to both numerator and denominator. Smoothing prevents zero probabilities in
further computations.

• Logistic Regression: Regularized logistic regression is implemented, which can
handle the sparse input. The inverse of regularization strength is specified by
parameter C (positive float), smaller C specifies stronger regularization.

• Support Vector Machines: SVMs is implemented with different kernel methods,
the choices of which include [Elisseeff and Weston 2002]:

– linear: 〈x, x′〉
– polynomial: (γ〈x, x′〉+ r)d

– RBF (radial basis function): exp(−γ‖x− x′‖2)

– sigmoid:(tanh(γ〈x, x′〉+ r))

We implement C-support vector classification based on libsvm [Chang and Lin
2011]. Penalty parameter C indicates the error term.

• Decision Tree: we use information gain to measure the quality for splitting
branches, which is defined by Equation 3.6.

Let pi be the probability that an arbitrary record belonging to class ci of K classes.
Then the expected information (called entropy) needed to classify a record in
dataset D is

In f o = −
K

∑
i=1

pi log2(pi), (3.4)

42 Methodology

If we use feature F to split the dataset D into v partitions, the information needed
to classify the whole dataset is reduced to

In f oF = −
v

∑
j=1
×

D j

D
In f o(D j), (3.5)

The information gained by branching on feature F is

Gain(F) = In f o(D)− In f oF(D). (3.6)

3.3 Evaluation

Once we build a classification model which can predict labels, we need to evaluate
the performance of the model for unobserved records. The evaluation methods and
metrics used in this project are introduced in this section.

For the COD dataset, the training file and testing file are given with different struc-
tures. Thus, we directly train classifier models on training dataset and test on testing
dataset.

For the OCC dataset, one gold standard file is given. We perform the data pre-
processing on the whole dataset and split the dataset into the training dataset (80%)
and the testing dataset (20%). Considering the imbalance classes in our dataset, we
use the stratified shuffle split, where relative class frequencies are approximately pre-
served in training and testing datasets. Before splitting, we delete the codes that only
occur once in the dataset, since after splitting there cannot be at least one record for
the code in both training and testing dataset.

It could be better if we can use cross-validation [Kohavi et al. 1995] to make full
use of the dataset and get the average performance for multiple models. However,
it would be more time consuming for experimental tests considering the size of data.
Due to the time limit, we use hold-out evaluation method for this project. For future
work, cross-validation model can be tested, as discussed in Section 5.2

Although we are dealing with the multi-class and multi-label classification prob-
lem, we transformed the problem into multiple binary classification problems (shown
in Algorithms 2 and 3). Therefore, we can apply the evaluation metrics for the binary
case as well.

To demonstrate the meaning of the evaluation metrics for our historical dataset,
we use a contingency table for binary classification, which is shown in Table 2.1 (on
Page 22), where columns are ground truth and rows are predicted labels. For each
trained classifier for code c, we treat the records belonging to c as positive records and
all other records as negative records.

§3.3 Evaluation 43

Informally, the metrics are defined for historical dataset as follows:

• True Positive (TP): the number of records which actually belong to the code c
and are classified correctly into c.

• False Positive (FP): the number of records which actually not belong to the code
c and are classified wrongly into c.

• False Negative (FN): the number of records which actually belong to the code c
and are classified wrongly not to belong to c.

• True Negative (TN): the number of records which actually not belong to the code
c and are classified correctly not to belong to c.

In our project, we use precision, recall and F-measure to evaluate each code and
overall performance. The definition of these concepts is given in Section 2.4.3.
To explain why we choose these evaluation metrics, we first show what these
metrics mean for historical dataset:

– Precision: the percentage of correct classification among historical records
that are classified as belonging to code c.

– Recall: the percentage of correct classification among all historical records
actually belong to code c.

– F-measure: a trade-off version of precision and recall, showing both how
precise the classifier is (how many instances it classifies correctly) and how
robust it is (it doesn’t miss a significant number of instances). We set pa-
rameter β = 0.5 in our project, which is the harmonic mean of precision
and recall.

These measures evaluate the model for the percentage of correct classification in
terms of the ground truth and predicted labels, rather than all the records. For
imbalanced classes, evaluating on all records (i.e. accuracy) can always achieve
a good result if we just simply classify all records into the class with majority
records.

Precision and recall can better reflect the model with imbalance classes. For
example, if we totally have 100 unobserved records, where only 3 records are
assigned as belonging to code c and others not belonging to c. Then if we sim-
ply classify all records as not belonging to c, then the accuracy is 0.97, which is
extremely high, although the model is not working at all. However, it will lead
to a bad precision (0) since no record is predicted to code c and a bad recall (0)
since records truly belonging to c are all wrongly classified.

F-measure can give a balanced version for the observed model. By themselves,
a bad precision or recall cannot imply a bad model. Precision and recall supply
different versions to observe the performance of the model. The choice between
precision and recall is based on what characteristic (precise or robust) of the

44 Methodology

ID Label Predict
1 c c
2 c c
3 c c
4 not c c
5 not c c
6 not c c
7 not c not c
...
100 not c not c

Table 3.6: Example for predicted labels. We have 100 records with imbalanced classes,
where only first three records belong to c. We predict first six records belonging to c
and all other records not belonging to c.

model the user emphasizes. For example, in Table 3.6, the recall is 1 since all
records belonging to c are correctly predicted; precision is only 0.5, since only
half of records predicted to c are correct. However, either precision and recall
doesn’t evaluate the model well. The recall indicates the model is perfect and
the precision indicates the model only randomly guessing. In this case, we can
use F-measure to evaluate the model, which supplies a trade-off version of the
both metrics and can give a more reasonable score (0.67).

As shown in Algorithms 2 and 3, we calculate precision, recall and F-measure
for each code respectively and then get the overall performance by taking mean
of those measure values for all codes.

3.4 Chapter Summary

In this section, we summarised the historical coding classification processes and showed
the algorithm pipeline in Figure 3.5, where each step is summarised as follows:

1. Load dataset: load the input dataset and record the information for historical
text descriptions and codes.

2. Clean text descriptions: data cleaning includes three main steps:

• General cleaning: includes removing unwanted characters (i.e. punctua-
tion, extra white-spaces and stop-words) and stemming.

• Spelling correction: a similarity-based approach is applied to correct po-
tential misspellings.

• Inconsistency correction: the same text description may have multiple la-
bels. We replace inconsistency labels to the most frequent label assigned to
the same description.

§3.4 Chapter Summary 45

Start

1. Load dataset

2. Clean text descriptions

3. Generate features

4. Generate matrices for features
and class labels

5. Dimensionality reduction

6. Train one classifier per class

7. Evaluate on test dataset

End

Figure 3.5: Historical coding classification algorithm pipeline

3. Generate features: we use individual and combination n-grams as feature types
and TF-IDF as feature weight. This step transforms input text descriptions into
feature vectors.

4. Generate metrics: we build N × D record-feature matrix based on the generated
feature vectors and N × K record-code matrix, where N is the number of records,
D is the number of feature dimensions and K is the number of classes.

5. Dimensionality reduction: we use principal component analysis (PCA) to re-
duce feature dimensions, where the number of components is carefully selected
to balance the classification performance and computational cost.

46 Methodology

6. Train one classifier per class: we use the transformation strategies to address the
multi-class and multi-label classification problems, converting them into multi-
ple binary classification tasks. The classification methods for the COD and OCC
datasets are slightly different due to the different structure of each dataset. The
classification algorithms include naive Bayes, logistic regression, support vector
machine and decision tree.

7. Evaluate on test dataset: we use the hold-out method, training the model on
the training dataset and testing it on the testing dataset. Evaluation metrics are
precision, recall and F-measure, which are calculated for each code respectively.
The overall results are calculated by taking the mean of scores of individual
codes.

Also note that for the COD dataset, the training and testing datasets are separately
given, thus Steps 1 to 5 are processed separately on the training and testing datasets.
For the OCC dataset, we split the given dataset after dimensionality reduction (Step 5).
In the next chapter, we will show the characteristics of the datasets and the evaluations
results for both of the datasets.

Chapter 4

Evaluation

In this chapter, we will introduce the characteristics of the two datasets in Section 4.1,
namely the cause of death (COD) and occupation (OCC) datasets. Then in Section 4.2,
we will show the experiments we designed to evaluate our techniques as well as the
corresponding results.

4.1 Dataset Description

In this section, we will firstly introduce the standard coding system we adopted in
our work. Then we will demonstrate the characteristics of our datasets.

• Standard Coding System:

As described in Section 2.2, the standard coding system used in the COD and
OCC datasets are International Classification of Disease (ICD-10) and Historical
International Standard Classification of Occupation (HISCO) respectively. We
will show some examples in the datasets and methods we pre-processed them.

The COD dataset

The COD dataset is based on the International Classification of Disease (ICD-
10) classification scheme [WHO 1990]. Table 4.1 shows a sample of the ICD-10
classification scheme. The ICD-10 classification scheme is hierarchical. We call
the three-character categories as the main code and the four-character categories
as the full code. For example, A00 is a main code and A00.10 is a full code.

Code Structure Standard Code Standard Disease Name
Main code A00 Cholera

Full code
A00.00 Cholera due to Vibrio cholerae 01, biovar

cholerae (Classical cholera)
A00.10 Cholera due to Vibrio cholerae 01, biovar eltor

(Cholera eltor)
A00.90 Cholera, unspecified

Table 4.1: ICD-10 Classification scheme examples

47

48 Evaluation

In the COD dataset, the given codes are all full code, from where we extract the
main code. Some extraction examples are shown in Figure 4.1. Records with
different full codes can have the same main code after extraction. For example,
A00.90 and A00.91 both becomes the main code A00. As a result, each code of
the main code will have more training records compared with full code.

The number of records with main and full codes in the COD dataset is shown
in Table 4.2. Some codes only occur in the training or testing dataset. Codes
only occurring in the training dataset are trained without valid evaluation, while
codes only occurring in the testing dataset cannot be trained due to lack of solid
training. Therefore, we only consider those codes that occur in both the training
and testing datasets.

ID Cause of death Full Code (ICD-10)

1159 cholara A00.90

3105 choleric diarrhoea A00.91

A00 .90
A00 .91

ID Cause of death Main Code (ICD-10)

1159 cholara A00

3105 choleric diarrhoea A00

Extract

Figure 4.1: Examples of the main code extraction process

Main Code Full Code
Codes in training dataset 290 484
Codes in testing dataset 311 533
Codes only in training dataset 55 128
Codes only in testing dataset 76 177
Codes in both training and testing dataset 235 356

Table 4.2: The COD dataset unique code counts

§4.1 Dataset Description 49

The OCC dataset

The OCC dataset is coded to the Historical International Standard Classification
of Occupations (HISCO) [Van Leeuwen et al. 2002]. Table 4.3 shows the example
HISCO hierarchical scheme. The major code is a top-level occupation hierarchy
with single number, while the minor and unit codes are more detailed hierarchies
with two or more characters. For example, 0 is a major code, 0-1 is a minor code
and 0-11.10 is a unit code.

Code Structure Standard Code Standard Occupation titles
Major Groups 0 Professional, Technical and Related Workers
Minor Groups 0-1 Physical Scientists and Related Technicians

Unit Groups
0-11 Chemists
0-11.20 Organic Chemist
0-11.90 Other Chemists

Table 4.3: HISCO scheme examples

In the OCC dataset, the given codes include all three types. Similar as shown
in Figure 4.1, we also extract higher hierarchical codes from lower hierarchies.
Table 4.4 shows the number of different types of codes in the OCC dataset.

Major Code Minor Code Unit Code
Input Dataset 10 76 332

Table 4.4: The OCC dataset unique code counts

• Dataset Characteristic:

After demonstrating the basic classification schemes, we now describe some of
the characteristics of our datasets. We use the COD training dataset and the OCC
dataset as examples.

– Skewed distribution of classes:
We define the frequency of code c as the number of records with c in a
dataset. A common problem with our historical COD and OCC datasets is
the unbalanced distribution of class labels. In the COD training dataset the
code frequency ranges from 1 to 2,834; in the OCC whole dataset the code
frequency ranges from 2 to 7,270.
Table 4.5 shows the five least and most frequent codes (both main code and
full code) in the COD training dataset. 347 codes have no more than 10
training records, and 92 codes only have 1 training record.

50 Evaluation

Code Count

Least Frequent

G20 1
P95 1
K14.00 1
C34.90 1
Y19.04 1

Most Frequent

I51 952
J20.91 985
J20 1245
A16.96 1255
A16 2834

Table 4.5: Five least and most frequent codes in the COD Dataset

Figures 4.2 and 4.3 show the code frequency distribution for the COD and
OCC datasets. The left figures show small code frequency between 0 to 100,
and the right figures show the code frequency larger than 100. From the fig-
ures we can see that both the datasets have many low frequency codes and
distribution of code frequencies are quite skewed.

0 20 40 60 80 100
Code frequency

0

25

50

75

100

125

150

175

Nu
m
be
r o

f c
od
es

Small Code Frequency Distribution

100 600 1100 1600 2100 2600
Code frequency

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m
be
r o

f c
od
es

Large Code Frequency Distribution

Figure 4.2: Code frequency distribution in COD training dataset. The horizontal axis
is code frequency. The vertical axis is the number of codes for a certain code frequency.

§4.1 Dataset Description 51

0 20 40 60 80 100
Code frequency

0

10

20

30

40

50

60
Nu

m
be

r o
f c

od
es

Small Code Frequency Distribution

100 1100 2100 3100 4100 5100 6100
Code frequency

0

20

40

60

80

Nu
m
be

r o
f c

od
es

Large Code Frequency Distribution

Figure 4.3: Code frequency distribution in OCC training dataset. The horizontal axis is
code frequency. The vertical axis is the number of codes for a certain code frequency.

– Non-standard descriptions with different length:
Medical personnel writes the cause of death descriptions with abbrevia-
tions and narrative descriptions. There are more than one thousand records
with abbreviations, such as ”hc”, ”sf”, which stands for ”whooping cough”
and ”Scarlet fever”. This kind of descriptions can be very short and diffi-
cult to interpret to non-experts. There are also long narrative descriptions
providing detailed explanations of death causes, for example, one record is
”died suddenly probably from heart disease but can”t certify the cause as
life was exinct before being seen by any medical man”.
The lack of consistency between descriptions and abbreviations makes the
data sparse and hard to be correctly classified. Figure 4.4 and 4.5 show
the COD and OCC description length distribution respectively, measured
as the number of characters (left plots) and words (right plots) in a textual.
For example, the length of string ”cancer of liver” is 15 and it has 3 words.

52 Evaluation

0 25 50 75 100 125 150
raw cause length

0

2

4

6

8

10

Lo
g_

2
(n

um
be

r o
f r

ec
or

ds
)

Log Cause Length Distribution

0 5 10 15 20 25 30
word count

0

2

4

6

8

10

12

Lo
g_

2
(n

um
be

r o
f r

ec
or

ds
)

Log Word Count Distribution

Figure 4.4: Text length distribution in COD training dataset. The horizontal axis shows
the cause character/word length. The vertical axis shows the log of number of records
with a certain text length.

0 10 20 30 40 50
raw job title length

0

2

4

6

8

10

12

14

Lo
g_

2
(n

um
be

r o
f r

ec
or

ds
)

Log Job Title Length Distribution

2 4 6 8 10 12 14
word count

0

2

4

6

8

10

12

14

16

Lo
g_

2
(n

um
be

r o
f r

ec
or

ds
)

Log Word Count Distribution

Figure 4.5: Text length distribution in OCC training dataset. The horizontal axis shows
character/word length of the occupation titles. The vertical axis shows log of the
number of records with a certain text length.

§4.1 Dataset Description 53

– Misspellings:
Both the COD and OCC descriptions have many misspellings. The datasets
are originally collected in handwritten format, as shown in Figures 1.1 and
1.2. The scanned copies of handwritings are not clear enough and not easy
to read, which leads to some typographical errors in the historical datasets.
Table 4.6 and 4.7 show examples of records containing misspellings.

Id Cause of death Code (IDC-10) Misspelling Correction
2022 caner of thigh C76.50 cancer
6637 injuriy of knee & chest Y34.07 injury
1230 hoopen cough (spelling?) A37.90 whooping, swelling

Table 4.6: Misspelling examples in the COD dataset

Id occupation Title Code (HISCO) Misspelling Correction
1465 sargeant major 5-83.00 sergeant
1796 electrical enginneer 8-55.00 engineer
2492 sales assistent, drapery 4-51.00 assistant

Table 4.7: Misspelling examples in the OCC dataset

– Human coding inconsistency:
Records of text descriptions are manually coded into standard classifica-
tion coding schemes. The same text description can be coded into different
categories. From the 2,139 unique cause of death descriptions, 8 have been
coded to more than one ICD-10 code; and from 9,771 unique occupation
titles, 128 have been assigned to more than one HISCO code.
We give examples for multiple-coded descriptions below, where labels with
a frequency smaller than 5% with regard to all label for the unique descrip-
tion is shown as ”other”. For example, in the COD training dataset, death
description ”bronchitis” is coded into:

∗ Acute bronchitis, unspecified (J20.91): 82.6%
∗ Simple chronic bronchitis (J40.01): 15.3%
∗ Other : 2.1%

In the OCC dataset, the occupation title ”dairyman” is coded into:

∗ Livestock Worker, Specialisation Unknown (6-24.00): 75.0%
∗ Livestock Farmer (6-12.40): 20.8%
∗ Other : 4.2%

Taken together, these issues present considerable challenges for classification.
Skewed class distribution and different length of descriptions leads to sparse
data. The lack of training records makes it difficult to apply certain machine

54 Evaluation

learning approaches. Noisy descriptions including abbreviations, narrative sen-
tences and misspellings will likely influence the accuracy in a negative way. In
the next section, we will introduce the experiments designed to address these
problems.

4.2 Experiments and Results

In this section, the model parameter details for experiments is explained first. Then
we design experiments for the COD and OCC datasets to evaluate automatic classifica-
tion algorithms, where the main experiments (classifier and features testing, spelling
correction and PCA experiments) are performed on the COD dataset, and the best pa-
rameter choices are applied for the OCC dataset to validate the generalisation of our
methods.

4.2.1 Experimental Setup

The experimental design is based on the algorithm pipeline shown previously in Fig-
ure 3.5. We introduce the options for parameters in the pipeline as follows:

• Input file: we used two historical datasets collected from Scotland from two
domains, namely cause of death (COD) and occupation (OCC). See Section 1.2
for examples of the datasets.

– COD dataset: the training and testing datasets are given separately. Each
record is coded into one class in the training dataset and coded into multi-
ple classes in the testing dataset.

– OCC dataset: only one file is given and we split it into one training dataset
and one testing dataset after dimensionality reduction. Each record is as-
signed to one label.

• Clean flag: To indicate whether to clean the text descriptions. The cleaning steps
include remove unwanted characters, stemming, spelling correction and incon-
sistency correction (see Section 3.1.1 for details). Spelling correction algorithm
is separately tested. For spelling correction, we have different choices for the
following parameters:

– Frequency threshold: a positive integer as threshold to distinguish correct
words and potential misspellings.

– Similarity threshold: a fraction as threshold to decide whether a potential
misspelling will be replaced as its most similar word.

– String matching techniques: measures to calculate the similarity between
words. We use either edit distance or longest common sub-string (LCS).

§4.2 Experiments and Results 55

• Feature list: The list of feature types to use, including individual feature types
and combinations, where individual feature types include:

– w1: single words

– w2: double words

– w3: triple words

– q1: character unigrams

– q2: character bigrams

– q3: character trigrams

– s1: skip unigrams

– s2: skip bigrams

The possible combinations is the combination of any individual feature type
(e.g. ”w1,q2”). See Section 3.1.2 for examples.

• For dimensionality reduction, we use principal components analysis (PCA) (See
Section 3.1.3 for details):

– PCA Flag: to indicate whether to use PCA.

– n components: the percentage of the amount of variance to be retrieved.

• Classifier types and corresponding parameters (See Section 3.2.2 for details):

– Naive Bayes (NB): using multinomial NB, α (additive smoothing parame-
ter: float)

– Logistic regression (LR): C (inverse of regularization strength: positive float)

– Decision Tree (DT): criterion (one of: gini, entropy)

– Support vector machine (SVM): kernel (one of: linear, poly, rbf, sigmoid).

The abbreviation showed in brackets are used to throughout this chapter to rep-
resent each classifier.

• According to code hierarchy, the code types can be:

– For death code, use one or more of the main code or full code.

– For occupation code, use one or more of the major code or minor code or unit
code.

We summarise the above parameter choices in Table 4.8, where six main parame-
ters are outlined. The spelling correction and PCA parameters are not included in the
table.

56 Evaluation

Para
Input
file(s)

Clean
flag

Feature
list

PCA
flag

Classifier Code Type

Choices
COD
OCC

True
False

w1,w2,w3,
q1,q2,q3,

s1,s2
combs

True
False

NB (0.1)
LR (1.0)

SVM (linear, 1.0)
DT (entropy)a

main/ full
major/ minor/ unit

aNB: naive Bayes; LR: logistic regression; SVM: support vector machine; DT: decision tree

Table 4.8: Experimental parameters setup.

4.2.2 COD : Experimental Design and Results

In this section, we discuss the three main experiments we designed and the corre-
sponding results on the COD dataset, which include:

• Classifier and Feature Experiment: all combinations of feature types and clas-
sifiers are evaluated in terms of individual classifier performance and overall
performance. The patterns between classification performance and code fre-
quency/text length are explored.

• Spelling Correction Experiment: parameters for the spelling correction algo-
rithm demonstrated in Algorithm 1 (on page 30) are explored, namely frequency
threshold, similarity threshold and similarity method. To observe how spelling cor-
rection influences the results, controlled experiments are designed, where we
tune one parameter to observe changing trend and keep other parameters un-
changed.

• PCA Experiment: this experiment is designed to explore how to achieve a bal-
ance between classification performance and computational cost by remaining
different number of dimensions in the PCA algorithm. A variety of results with
PCA on different classifiers are shown in terms of both classification perfor-
mance and computational cost.

For each experiment, we will first show the design ideas and parameter settings.
Followed this, detailed results and analysis will be shown. Finally, we will discuss the
results in terms of the significance and limitations.

1. Classifier and Feature Experiment

We design this experiment to explore how feature types and classifiers influence
the classification performance. We iterate the training and evaluation process
for different combinations of feature types and classifiers, and keep other pa-
rameters unchanged.

In total, 1,024 combinations of classification and feature types have been ex-
plored in this experiment. Each of the individual feature types can be included
in the feature type list or not, so we have 28 = 256 feature types in the feature

§4.2 Experiments and Results 57

Para
Input
file(s)

Clean
flag

Feature
list

Feature
weight

PCA
flag

Classifier
Code
Type

Setting COD True
all type of
combina-

tionsa
TF-IDF False

NB (0.1)
LR (1.0)

SVM (linear, 1.0)
DT (entropy)b

main
full

acombinations of w1, w2, w3, q1, q2, q3, s1, s2. Totally 28 = 256 combinations for feature types.
bNB: naive Bayes; LR: logistic regression; SVM: support vector machine; DT: decision tree

Table 4.9: Setting for classifier and feature experiment

type list. We perform the experiment using four classifiers, namely naive Bayes
(NB), logistic regression (LR), support vector machines (SVMs) and decision tree
(DT). Therefore, there are 256 × 4 = 1,024 combinations in total. Table 4.9 shows
the parameter settings for this experiment.

For evaluation, we calculate the precision, recall and F-measure separately for
each code, and taking the corresponding means of these evaluation scores, as
shown in Algorithm 2 and 3 (on Page 39). In this experiment, we analyse the
overall performance and individual classifier performance for each code respec-
tively.

Overall Performance

For overall performance (precision, recall and F-measure means), we pose the
following questions:

• Which combination(s) give the best overall performance?

• Which classifier(s) tend to give a better overall comparative performance?

• Which kind of feature types performance better? Long combinations of
features or individual ones?

First, we rank the overall performance score for all combinations. Figure 4.6
shows the combinations which achieve the best performance in terms of each
evaluation metric. The figure shows the performance with different code fre-
quencies, where we define the code frequency for code c as the number of train-
ing records for c.

As shown in Figure 4.6, the best precision is achieved by the combination ”q2,
q3, w2, w3, s1, s2” and SVM. The best recall and F-measure score is returned by
”w1” and DT. The overall performance scores are not very high because they are
greatly influenced by the codes with low code frequency, where there are many
code with a score below 0.5.

58 Evaluation

0 500 1000 1500 2000 2500
Code frequency

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
isi
on

COD-q2,q3,w2,w3,s1,s2,SVM

(a) Best Precision: 0.75

0 500 1000 1500 2000 2500
Code frequency

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

COD-w1,DT

(b) Best Recall: 0.63

0 500 1000 1500 2000 2500
Code frequency

0.0

0.2

0.4

0.6

0.8

1.0

F-
m
ea

su
re

COD-w1,DT

(c) Best F-measure: 0.63

Figure 4.6: Overall best performance (COD). The horizontal axis shows the code
frequency, which is the number of records for a code. The vertical axis shows the
precision/recall/F-measure score. We scatter performance scores of each code as blue
points and use a binning approach to show the performance trend (green line with
marker). The red star represents the average value of both code frequency and perfor-
mance. The higher the evaluation score (closer to 1), the better the performance.

§4.2 Experiments and Results 59

We use the F-measure score to do further evaluation of model preference. For the
combinations that achieved top 100 F-measure scores (≥ 0.55), 96% of them in-
clude SVM classifier, 4% include DT classifier and there were none for NB or LR.
This result is interesting since for the COD dataset, SVM performs stably better
than other classifiers. Another interesting fact is that SVM performances better
with long feature combination lists (more than 3 individual feature types” com-
bination, like ”q2, q3, w2, w3, s1”) than with short ones. And for DT, the four
best combinations are ”w1”, ”w1, w2”, ”w1, w3” and ”w1, w2, w3”, amongst
which ”w1” achieves the best F-measure score compared with all combinations.

The results show that among the four classifiers, SVM and DT on average per-
form better in terms of the F-measure score. DT is feature-sensitive, only per-
forming well when it combines with word level feature types. And the bag of
words (word level unigram) is the best combination choice for DT. SVM is less
feature-sensitive compared with DT, performing well with a variety of features
and it generally achieving better results when combining more features rather
than less features.

The different preferences for features of SVM and DT can be explained by how
the classifiers work. SVM depends on the support vectors that define the max-
imum margin rather than all of the input features. Thus SVM is less feature-
sensitive. More input features may take SVM more time to find the support
vectors, but they also help SVM to find the more accurate margin to separate
different classes. So SVM with long feature combinations can achieve better
performance compared with individual feature types. DT generates a tree-like
structure to predict labels, splitting branches on each feature. Word level fea-
tures tend to give the DT algorithm a clearer way to generate a tree, since each
feature itself has semantic meaning and it is sensible to be treated as an individ-
ual splitting point. The character features are less independent and may lead to
an over-complex and over-fitting tree.

Performance for each classifier

From Figure 4.6, we can see that the performance differs in terms of different
code frequencies. The overall performance is greatly influenced by low fre-
quency codes and may not accurately reflect the true performance of the clas-
sifier. Thus it is worthwhile to analyse the individual code performance and
explore patterns behind the performance. More precisely, we can pose this in
terms of the following questions:

• Which combinations of classifiers or feature lists appear most frequently as
the best combinations for each code?

• How is performance influenced by the code frequency? Is there any pat-
tern between the performance of different classifiers/features and the code
frequency?

• How is performance influenced by the length of text descriptions (number
of words)?

60 Evaluation

To answer the above questions, we design three sub-experiments:

(1) Frequent Best Combinations

Similar to the overall performance analysis, we first find the combinations that
achieve the best F-measure for each code (we call them best combinations). For
example, for code ”A17.01”, the maximum F-measure is 0.98, which is returned
by ”w2, w3, DT” and ”w2, DT” combinations. Note that there are 21 codes
with maximum F-measure (max f) equalling to 0. Table 4.10 shows the relation-
ship between the code frequency and the number of codes with 0 maximum
F-measure (# max f). We can see most of the zero scores come from the code
with only one training record (71.4 %) and all zero scores are from the codes
with a low frequency (≤ 6), which shows the challenge brought about by a lack
of training records.

From the best combinations for each code, we extract the features and classifiers,
and calculate their frequency to achieve the best F-measure. For example, from
a combination ”q2, q3, w2, w3, s1, SVM”, the feature combination ”q2, q3, w2,
w3, s1” and the classifier ”SVM” are extracted. The top 5 best combinations,
features and classifiers along with their frequency (count divided by total code
number) are shown in Table 4.11. ”q2, q3, w2, w3, s1” and SVM are the most
frequent feature list and classifier of being included in the best combinations.

Code Frequency #max f = 0
1 15
2 3
4 1
6 2

Total 21

Table 4.10: Poor performance codes. The first column shows the code frequency, the
second column shows the number of codes with maximum F-measure equalling 0.

Rank Combination Feature Classifier
name freq name freq name freq

1 q2 q3 w2 w3 s1, SVM 0.2166 q2 q3 w2 w3 s1 0.2166 SVM 0.5415
2 q2 q3 w3 s2, DT 0.0457 q2 q3 w3 s2 0.0457 DT 0.3503
3 q1 w1 w3 s1, SVM 0.0423 q1 w1 w3 s1 0.0423 NB 0.0609
4 w3, DT 0.0355 w3 0.0355 LR 0.0118
5 w2 w3, DT 0.0338 w2 w3 0.0338

Table 4.11: Top 5 rank best combinations. The ”name” column shows the name of
combinations/features/classifiers, the ”freq” column shows the frequency for each
item being included in the best combinations.

§4.2 Experiments and Results 61

(2) Code Frequency

To figure out how performance is influenced by the code frequency, we first
sort all the codes (591 codes for both main code and full code) in terms of the
code frequency and then bin them into 5 code frequency groups (CFG), where
each group has approximately the same number of codes (around 118). The
bound of CFGs can be overlapped since codes with the same code frequency
can be binned into different groups. Then each CFG with its corresponding
code frequency interval is:

• CFG 1: [1,2]

• CFG 2: [2,4]

• CFG 3: [4,12]

• CFG 4: [12,42]

• CFG 5: [42,2834]

For each CFG, we calculate the frequency of classifiers/features present within
in the best combinations, where the frequency for classifier/feature m in CFG n
is calculated as a relative frequency count:

Fm,n =
Cm

Nn
, (4.1)

where Cm is the count of m extracted from all the best combinations which
achieve maximum F-measure score for each code, Nn is the total number of
codes in CGF n.

Then for each CGF, we rank the best combinations, features and classifiers as we
did in Table 4.11. We show the rank results (Top 5) in Appendix. To clearly com-
pare the frequency of classifiers/features between CGFs, we draw lines plots
to show the frequency of each classifier/individual feature in terms of different
CGFs, which is shown in Figures 4.7 and 4.8.

Classifier Frequency

Figure 4.7 shows the frequency of classifiers in terms of code frequency. It is clear
that as the code frequency increases, the percentage of best performance from
SVM grows and the percentage of DT decreases. NB and LR are less competitive
compared with SVM and DT; their frequencies are on average below 0.1 for all
CFGs.

When the code frequency is low, many features tend to appear with low weight
since they only appear a few times. SVM may find an inaccurate maximum mar-
gin hyperplane due to the limited number of features. More training records can
provide more features and the valuable features tend to have higher weights,
which helps SVM to find support vectors more accurately. So when the code

62 Evaluation

[1,2] [2,4] [4,12] [12,42] [42,2834]
Code Frequency

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
eq

ue
nc

y

Frequency of Classifiers with Best Performance vs. Code Frequency
DT
LR
NB
SVM

Figure 4.7: Frequency of best classifiers for five CFGs (COD). The horizontal axis rep-
resents the code frequency for 5 code frequency groups (CFGs). The vertical axis
shows the frequency of classifiers that achieve a maximum F-measure score for codes
in each group. The higher the frequency, the better the performance.

frequency increases, the SVM takes a larger percentage of the best performance
combinations. However, for DT, more features may lead the classifier to gener-
ate an over-fitting tree, which fits the training model well but is poor at general-
ising to out-of-sample data.

Feature Frequency

From the best feature combinations, we extract the frequency of each individual
feature. Figure 4.8 shows the frequency of individual features in terms of code
frequency. Word level feature types (w1, w2, w3) are represented in green, char-
acter level feature types (q1, q2, q3) are represented in red, and skip features are
shown in blue.

It can be seen from Figure 4.8 that when the code frequency increases, the fre-
quency of word level features increases while the frequency of the character
level and skip features decreases. In general, when code frequency is relatively
low (1st-4th CFGs), ”q2” and ”q3” have a good (with around 0.4 -0.6 frequency)
and stable (with small changes) performance, and when there are enough train-
ing records (5th CFG), word level features can provide better performance. The
”q1” feature type is less competitive compared with other feature types, with
frequency in the range 0.1-0.2 for all CFGs.

§4.2 Experiments and Results 63

[1,2] [2,4] [4,12] [12,42] [42,2834]
Code Frequency

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Fr

eu
qe

nc
y

Frequency of Features with Best Performance vs. Code Frequency
q1
q2
q3
s1
s2
w1
w2
w3

Figure 4.8: Frequency of best features for five CFGs (COD). The horizontal axis repre-
sents the code frequency for 5 CFGs. The vertical axis shows the frequency of individ-
ual feature types that achieve a maximum F-measure score for codes in each group.
The higher the frequency, the better the performance.

When the number of training of records is very small, the input records cannot
provide enough features and valid feature weights for model training. In this
case, character level feature types can provide more information (features) to
the classifiers compared with the word level feature types. Thus when code
frequency is low, the character level features perform better.

When there are enough training records, we can have a large number of word
level features, which can provide sufficient information for the model to classify
the unobserved records. Furthermore, each feature generated from word level
types can be more independent and meaningful compared with character level
features. The character level features may interfere with the classification, ap-
pearing as noise in some cases. Thus when the code frequency is high, word
level features perform better.

In conclusion, code frequency significantly influences the performance of classi-
fiers. There are obvious patterns between classifiers/feature types and the best
performance in terms of different code frequencies. For low code frequencies,
DT and character level feature types tend to perform better; while for high code
frequencies, SVM and word level feature types tend to perform better.

64 Evaluation

(3) Text length

Define the word length of a code c as the average number of words in all train-
ing records for c. We use the word length to indicate the text length for codes.
Similarly to the binning code frequency groups, we first sort all the codes in
terms of the text length and then bin them into 3 groups, where each group has
approximately the same number of codes (around 197). The reason we choose 3
groups rather than the same number as CFGs (5 groups) is that we want to make
the text length difference between groups more obvious. The group bounds can
be overlapped since codes with the same text length can be binned into different
groups. It follows that each word length group (WLG) with its corresponding
word length interval is:

• WLG 1: [1,2]

• WLG 2: [2,3]

• WLG 3: [3,11]

For each WLG, we did the similar analysis as for CFGs. We first rank the best
combinations, features and classifiers and show the top 5 rank results in Ap-
pendix. Then we show the line plots for the frequency of classifiers in Figure
4.9. The frequency of features does not change too much in terms of different
WLGs, so we will not show the line plots for frequency of features.

[1,2] [2,3] [3,11]
The average number of words (#ave_word)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
eu

qe
nc

y

Frequency of Classifiers with Best Performance vs. #ave_word
DT
LR
NB
SVM

Figure 4.9: Frequency of best classifiers for three WLGs (COD). The horizontal axis
shows the the average word length. The vertical axis shows the frequency of classifiers
in the best combinations. The higher the frequency, the better the performance.

§4.2 Experiments and Results 65

Classifier Frequency

Figure 4.9 shows the frequency of classifiers achieving maximum F-measure
score in terms of text length. The frequency can be calculated by Equation 4.1.
It is clear that when the text length increases, the percentage of SVM achieving
best result decreases and the percentage of DT increases. NB and LR perfor-
mance worse than SVM and DT for all groups.

We have identified that word level features suit the DT classifier well when do-
ing the overall performance analysis; a larger number of words provides the DT
more valid information about the code and the DT tends to generate a more pre-
cise tree which describes the code in a more detailed way. Thus when the word
length for codes increases, the DT classifier performs better.

However, for SVM, more features included for one code means higher dimen-
sional data needs to be dealt with. From the length distribution in Figure 4.4, we
know that longer word length records tend to have a smaller quantity, which
means when the code word length increases, the records provide a high vari-
ety of features which only appear once or twice. It makes it more difficult for
SVM to linearly separate training records into different classes and find the ac-
curate maximum margin. Thus the SVM algorithm performs worse when the
code word length is longer.

In conclusion, word length also influence the performance of classifiers to some
extent. There are obvious patterns between classifiers and best performance in
terms of different word length. When world length is big, DT performs better
than SVM; otherwise, SVM performs better. The frequency of features is largely
invariant with different text length, meaning that there is no evident pattern
between best feature types and the number of words in records.

2. Spelling Correction Experiment

For the previous experiment, we already performed general cleaning (includ-
ing removing punctuations, handling white-spaces, removing stop-words and
stemming) in the data pre-processing process. Moreover, we found that the gen-
eral cleaning greatly improves overall model performance. For example, if we
use DT and w1, the general cleaning process can improve the F-measure from
0.50 to 0.63.

Aside from the general cleaning process, we also need to correct misspellings.
We use a similarity-based algorithm to automatically detect potential misspellings,
which is described in Section 3.1.1.

66 Evaluation

2 3 4 5 6 7 8 9 10
Frequency Threshold

600

700

800

900

1000

In
fre

qu
et
 W

or
d

Infrequet Word vs. Frequency Threshold

(a) fmin Experiment

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Similarity Threshold

0

100

200

300

400

500

600

W

or
d

Co
rre

ct
io

n

Words Correction vs. Similarity Threshold
LCS, f_min =2
LCS, f_min =3
editdist, f_min =2
editdist, f_min =3

(b) Smin Experiment

Figure 4.10: Spelling correction parameter experiments. Figure (a) shows the num-
ber of words separated to infrequent set in terms of different frequency thresholds.
Figure (b) shows the number of words being corrected in terms of different similarity
thresholds, frequency thresholds and similarity methods

For the spelling correction algorithm, we have three parameters:

• Frequency Threshold fmin: specifies the threshold for separating strings
into a frequent set and an infrequent set. We choose f min ∈ [2,10], where
f min is an integer.

• Similarity Threshold smin: specifies the threshold for determining whether
correct infrequent string into its most similar frequent one. We choose
s min ∈ [0.6,0.95] by every 0.05, where s min is a numeric number.

• Similarity Method simm(s, s”): specifies the algorithm m used for detecting
similarity between two string s, s”. Algorithm m can be edit distance and
longest common sub-string (LCS).

Figure 4.10 (a) shows the experiment for frequency threshold fmin. fmin deter-
mines the percentage of words to be in the infrequent set, which are regarded as
potential misspellings. When fmin becomes larger, the number of words being
regarded as infrequent increases. One intuition is that the percentage of poten-
tial misspellings should have a relatively small proportion of the total number
of unique words (1282). Thus we pick fmin ∈ {2, 3} to do further experiments
on similarity thresholds and methods.

Figure 4.10 (b) shows the experiment for similarity detection by observing the
number of words being corrected. When smin becomes bigger, the number of
words corrected decreases. Two similarity methods edit distance, longest common
sub-string (LCS) are explored. Refer to Section 3.1.1 for a detailed explanation
of these two methods. We can see that the edit distance algorithm calculates a
relatively lower similarity between two strings compared with LCS, which leads
to a smaller number of words being corrected.

§4.2 Experiments and Results 67

Origin Corrected Similarity
whistle white 0.7143

iron bron 0.7500
one bone 0.7500

caner cancer 0.8333
spelling swelling 0.8750
purpuria purpura 0.8750

injuriy injury 0.8751
turbercular tubercular 0.9091
consumtion consumption 0.9091

Table 4.12: Examples for Spelling Correction. The ”origin” column shows the po-
tential misspellings detected by our algorithm. The ”corrected” column shows the
most similar words that are used to correct the misspellings. The ”similarity” column
shows the similarity calculated by edit distance between the word in ”origin” column
and ”corrected” column.

Type f min s min sim m (s, s’) # word correction other

Spelling
Correction

2

0.8
editdist

152
COD

DT(entropy)
w1

both code type
no PCA

0.85 125
0.9 34
0.85

LCS
154

0.9 101
0.95 27

Original – – – –

Table 4.13: Setting for spelling correction experiments.

We hypothesise that the true misspellings in input records will not be larger than
1/8 of the total unique words (around 160), that is, edit distance with similarity
above 0.8 and LCS with similarity above 0.85. To verify our hypothesis, we ob-
serve the words being corrected with different similarities. Table 4.12 shows
some examples for words corrected by ”editdist, f min =2” (where editdist rep-
resent edit distance). We can see that the first three rows are wrongly corrected
and the others are rightfully corrected. The similarity below to 0.8 tends to lead
a wrong word correction.

Finally, we pick six groups with word correction (where smin ≥ 0.8 and # word
correction ≤ 160) and one group without word correction to conduct a con-
trolled experiment. The parameter settings are specified in Table 4.13. We show
the experiment results in Figure 4.11.

We found that spelling correction with suitable parameters can increase the
overall performance. From Figure 4.11 we can see that the cleaned data with
smin = 0.85, fmin = 2, edit distance similarity method gives the best performance,
increasing the F-measure without spelling correction by around 3%.

68 Evaluation

0.80 0.85 0.90 original
Similarity Threshold

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

Pe
rfo

rm
an

ce

Edit Distance, F_min = 2 (DT, w1)
prec
reca
fmea

(a) Edit Distance

0.85 0.9 0.95 original
Similarity Threshold

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

Pe
rfo

rm
an

ce

LCS, F_min = 2 (DT, w1)
prec
reca
fmea

(b) LCS

Figure 4.11: Spelling correction performance experiments. The experiments are based
on ”DT, w1” combinations. The horizontal axis shows similarity threshold choices for
edit distance (a) and LCS (b); the vertical axis represents the performance. The higher
the performance score is, the better the performance.

The spelling correction algorithm may also decrease the performance of classi-
fiers for some codes, since the algorithm may replace some correct words with
incorrect ones. From Figure 4.10, we know that in the COD dataset, most of
the words (around 50 %) only occur once or twice, so finding potential mis-
spellings according to the frequency of words may not be precise enough for the
COD dataset. If a correct word only occurs once and is very similar to the other
frequent words, then it will be mis-replaced.

3. PCA Experiment

We use the top ranking combinations selected from the previous ”Classifier and
Feature Experiment” to conduct our PCA experiment. As mentioned in Section
3.1.3, one of the major problems of implementing PCA is to select the suitable
number of components which can achieve a balance between classification per-
formance and computation time.

We conduct our experiment on different numbers of components to observe the
changing trend on performance and computation time. The experimental set-
ting is specified in Table 4.14, where n components specifies the percentage of the
amount of variance being explained by the remaining dimensions. We only do
experiments on SVM and DT since NB and LR were not found to perform well
in our previous experiments. Experimental results for SVM and DT are shown
in Figure 4.12.

§4.2 Experiments and Results 69

Type PCA Flag PCA Para Other

PCA True
n components ∈

{0.8, 0.85, 0.9, 0.95, 0.99}
COD

{q2 q3 w2 w3 s1 SVM,
q2 q3 w3 s2 DT}

Full code
Original False –

Table 4.14: Setting for PCA experiments.

0 2000 4000 6000 8000 10000
Remaining dimensions

0.50

0.55

0.60

0.65

0.70

Pe
rfo

rm
an

ce

Remaining Dimensions vs. Performance

prec
recal
fmea

0 2000 4000 6000 8000 10000
Remaining dimensions

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ru
n
tim

e

Remaining Dimensions vs. Run Time

(a) q2, q3, w2, w3, s1 - SVM

0 1000 2000 3000 4000 5000 6000
Remaining dimensions

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Pe
rfo

rm
an

ce

Remaining Dimensions vs. Performance
prec
recal
fmea

0 1000 2000 3000 4000 5000 6000
Remaining dimensions

600

800

1000

1200

1400

1600

1800

Ru
n
tim

e

Remaining Dimensions vs. Run Time

(b) q2, q3, w3, s2 - DT

Figure 4.12: PCA experiment results. The horizontal axis shows the remaining di-
mensions and the vertical axis shows the performance (left figures) or run time (right
figures). The run time includes pre-processing (including conducting PCA), training
and testing time and the unit of time is specified by seconds. The points on lines
indicate the remaining dimensions corresponding with the n components parameter
settings and the original dimension, where the original dimension is the largest one.

70 Evaluation

From Figure 4.12 (a), we can see that when around 1,000 dimensions (n components
= 0.95) are retained after conducting PCA, the performance of SVM is slightly
better than on the original data (9902 dimensions). However, if we continue to
choose a smaller n components (< 0.95), the performance scores decrease dra-
matically. The computational time is approximately proportional to the remain-
ing dimensions. When a lower dimension is used, less run time is needed. The
result shows that we can use PCA to achieve a similar or better result with a
great amount of computation time reduction when we use an SVM classifier.

Figure 4.12 (b) shows that for DT, when fewer dimensions retained, the perfor-
mance and computational time decrease with a similar rate. Since the computa-
tional time with the original dataset (1800s) for DT is relatively small compared
with SVM (9000s), it is not worthwhile to sacrifice the classification accuracy to
save running time with DT.

The reason that Figure 4.12 (a) and (b) show different performance trends likely
relate to the nature of the classifier. The nature of SVM is to find support vectors
from all input features. PCA can help SVM project valuable features into lower
dimensions and may also help SVM exclude noise, which may lead SVM to find
a more accurate maximum margin. However, DT splits on features and generate
logic rules for classification. When PCA projects features on low dimensions,
it mixes up the original features together, which may break the original valid
splitting rules.

The above experiments demonstrate that the PCA and spelling correction algo-
rithm can help to increase the performance with suitable parameter settings. There-
fore, we conduct PCA and spelling correction on the top combinations of parameters
identified previously in the Classifier and Feature Experiment. As a result, for the
overall performance, the best performance and corresponding parameter settings are
shown in Table 4.15, which improves by approximately 4% compared with results in
Classifier and Feature Experiment.

Metric Value Combination Run Time

Precision 0.78

[q2, q3, w2, w3, s1, s2]
[SVM, linear]
[PCA, 95%]

[SC, 0.85, 2, editdist]

2128.04

Recall 0.66 [w1]
[DT, entropy]

[SC, 0.85, 2, editdist]
918.17

F-measure 0.65

Table 4.15: Best performance summary for COD Dataset. Run time includes data pre-
processing, model training and evaluation, which is measured by seconds.

§4.2 Experiments and Results 71

4.2.3 OCC : Experimental Design and Results

We have explored the data pre-processing methods and classification models for COD
in the previous section. To explore whether the methods can be generalised to other
datasets well and not over-fit the COD dataset, we apply these methods for the OCC
dataset. The OCC dataset has similar characteristics to the COD dataset, but is from
another domain (see Section 4.1).

For the OCC dataset, we design two main experiments. One is the classifier and
feature experiment, where we use the top ranking best combinations from the OCC
datasets to train the OCC dataset. Another experiment is to apply the spelling correc-
tion and PCA algorithm with parameters selected from the COD dataset, to observe
the classification performance and run time.

1. Classifier and Feature Experiment:

We use similar parameter settings as the COD ”Classifier and Feature Exper-
iment”, except we use the subset of the best feature combinations for COD
dataset, rather than all combinations of possible individual feature types. More
specifically, for each classifier (NB, LR, SVM and DT), we choose 20 feature com-
binations that give the top F-measure scores.

For the OCC dataset, we are interested in the following questions:

• Will the performance for the OCC dataset be similar to the COD dataset?

• Which combination(s) give the best overall performance?

• Which classifier(s) tend to give a better overall performance compared with
others? Are they consistent with the results for the COD dataset?

• How can we find a balance between accuracy and computational cost, con-
sidering the size of the OCC dataset is three times bigger than COD dataset?

To evaluate the overall performance, we rank the scores for each evaluation met-
ric. The combinations that achieved the best precision, recall and F-measure
respectively are shown in Table 4.16 with the corresponding evaluation scores.

Metric Combination Precision Recall F-measure

Best Recall
[q2, q3, w1]

[NB, 0.1]
0.17 0.94 0.24

Best Precision [q1, q2, q3, w1, w2]
[SVM, linear]

0.91 0.81 0.84
Best F-measure

Table 4.16: Best performance for OCC dataset (without spelling correction and PCA)

The best precision and F-measure is achieved by a long feature type combination
and SVM classifier, which is consistency to the results we achieved in the previ-
ous COD experiments. However, the performance score is much higher than the
score for the COD dataset, where precision is improved from 0.75 to 0.91 and the

72 Evaluation

F-measure is improved from 0.63 to 0.84. The improvement can be attributed to
the difference between the datasets. Compared with the COD dataset, the OCC
dataset has shorter text descriptions and larger code frequency (see Section 4.1).

The best recall is achieved by the ”q2, q3, w1, NB” combinations, which is quite
different from the COD dataset. For the COD dataset, the combination ”q2,
q3” gives the best recall (0.54) among all feature combinations for NB classi-
fier, which is much lower than ”w1, DT” combinations (0.63 recall). In the OCC
dataset, the NB classifier outperforms others in terms of recall. However, it is
worth noting that the ”q2, q3, w1, NB” combination returns very poor preci-
sion (0.17) and F-measure (0.24), which means among the records classified as
belonging to one code, the correction classification rate is quite low. This may
occur when NB classifies most of the records as belonging to one code, then the
records which actually belong to the code are more likely to be correctly classi-
fied, resulting in a high recall.

To further analyse the performance of the two best combinations, we show their
precision and recall performance in terms of code frequency in Figure 4.13. Fig-
ure 4.13 (a) and (b) shows the precision and recall performance for the combi-
nation ”q1, q2, q3, w1, w2, SVM”. Compared with the COD best performance
shown in Figure 4.10, we find that the SVM algorithm performs much better at
classification when the code frequency is low. Although the SVM combination
does not achieve the best recall, it actually does perform well in terms of recall,
aside from a few low frequency codes that skew the result.

Figure 4.13 (c) and (d) show the precision and recall performance for the combi-
nation ”q2, q3, w1, NB”. The precision for NB is highly influenced by the low
frequency codes, where most of the codes only achieve around 0.2 precision.
The recall is less influenced by code frequency, staying relatively high for all
code frequencies. Overall, the NB combination does not suit a situation where
we expect the correction rate among all classified positive labels to be as high
as possible. But if we would like the ground truth positive label to be correctly
classified as much as possible, NB may be a good choice.

To find a balance between classification performance and computational cost,
we pick the best combination for each classifier, namely ”q2, q3, w1, NB”, ”q3,
LR”, ”q1, q2, q3, w1, w2, SVM” and ”w1, DT”, to undertake a comparison be-
tween performance and computational cost. The results are shown in Figure
4.14, from which we can see that the NB combination achieves the best recall,
but with a low precision and F-measure. The other three classifiers have similar
performance in terms of three evaluation metrics. SVM slightly out-performs
LR and DT, but is more costly in terms of time.

In conclusion, for the OCC dataset, LR, SVM and DT have reasonably good per-
formance, while NB has the best recall but low precision. If time matters, LR can
be a better choice than SVM, where LR can achieve similar performance with a
99% reduction in computational time.

§4.2 Experiments and Results 73

0 1000 2000 3000 4000 5000 6000
Code frequency

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

OCC-q1,q2,q3,w1,w2,SVM

(a) SVM Precision

0 1000 2000 3000 4000 5000 6000
Code frequency

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

OCC-q1,q2,q3,w1,w2,SVM

(b) SVM Recall

0 1000 2000 3000 4000 5000 6000
Code frequency

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

OCC-q2,q3,w1,NB

(c) NB Precision

0 1000 2000 3000 4000 5000 6000
Code frequency

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

OCC-q2,q3,w1,NB

(d) NB Recall

Figure 4.13: OCC performance versus code frequency. The horizontal axis shows the
code frequency, which is the number of records for a code. The vertical axis shows
the precision/recall. We plot performance scores of each code as blue points and use
a binning approach to show the performance trend (green line with marker). The red
star represents the average value of both code frequency and performance. The higher
the evaluation score (closer to 1), the better the performance.

74 Evaluation

NB LR SVM DT
Classifier

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an
ce

OCC Performance versus Classifier

prec
reca
fmea

(a) Performance Comparison

NB LR SVM DT
Classifier

0

1

2

3

4

5

Lo
g_
10

 (R
un
 T
im
e)

OCC Run Time versus Classifier

(b) Run Time Comparison

Figure 4.14: OCC performance and run time comparison.

2. Improvement Experiment:

We conduct spelling correction and PCA algorithm on the combinations used
above, namely ”q2, q3, w1, NB”, ”q3, LR”, ”q1, q2, q3, w1, w2, SVM” and ”w1,
DT”. These four combinations are used to represent each classifier”s best per-
formance. We design three experimental groups to explore whether the spelling
correction and PCA algorithm and selected parameters can improve the perfor-
mance of the OCC dataset as they did for the COD dataset:

• Original Group (OG): raw performance without spelling correction and
PCA. However, the general cleaning process (removing unwanted char-
acters, stemming, etc.) has been applied.

• Spelling Correction Group (SCG): apply spelling correction algorithm on
OG. The parameter choices are the same as the selected ones in the COD
dataset: similarity threshold = 0.85, frequency threshold = 2, similarity
method is edit distance.

• PCA Group (PCAG): apply PCA on OG with 95% n components.

The performance and run time for each group are shown in Figure 4.15. For
simplicity, we only use F-measure to show the performance change, and the run
time includes the time spent computing spelling correction or PCA.

For spelling correction, the classification performance (F-measure) for all classi-
fier combinations is slightly improved, which shows that the spelling correction
algorithm and selected parameters used in the previous experiments are also
suitable for the OCC dataset. The run time for each combination also slightly
increases.

§4.2 Experiments and Results 75

NB LR SVM DT
Classifier

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
F-

m
ea

su
re

OCC F-measure for Improvement Experiment
OG
SCG
PCAG

(a) Performance Comparison

NB LR SVM DT
Classifier

0

1

2

3

4

5

Lo
g_
10
 (R
un
 T
im
e)

OCC Log Run Time for Improvement Experiment
OG
SCG
PCAG

(b) Run Time Comparison

Figure 4.15: OCC performance and run time comparison for Improvement Experi-
ment. Three groups (OG, SCG and PCAG) performance and run time are compared.

For PCA, the F-measure score increase for LR and SVM and decreases for NB
and DT. The run time dramatically decreases for SVM and DT. However, since
NB and DT combinations originally consume a small amount of time and run-
ning PCA on a large dataset consumes a long time, the run time obviously in-
creases for NB and LR.

In conclusion, the overall performance shows consistency for the two datasets in
terms of spelling correction and PCA algorithm and selected parameters. The spelling
correction method can stably improve the classification performance without consum-
ing too much time. PCA performs well on SVM in terms of both F-measure and run-
time. The best performance with spelling correction and PCA are shown in Table
4.17. In the Combination column, the first row shows the feature combination and
the second row shows the classifier and corresponding parameters. PCA and SC rep-
resents conducting PCA and spelling correction respectively. Run time includes data
pre-processing, model training and evaluation, which is measured in seconds.

Metric Value Combination Run Time

Recall 0.94
[q2, q3, w1]

[NB, 0.1]
[SC, 0.85, 2, editdist]

2620.35

Precision 0.93
[q1,q2,q3,w1,w2]

[SVM, linear]
[PCA, 0.95]

[SC, 0.85, 2, editdist]

94085.03
F-measure 0.85

Table 4.17: Best performance summary for OCC dataset.

76 Evaluation

The results show that our approaches have great generalisation. The approaches
perform well on the COD dataset also achieve good performance on the OCC dataset.
Actually, the results shown in Table 4.17 are much better than the results for the COD
dataset, where only 0.78 precision, 0.66 recall and 0.65 F-measure is achieved. The
reason we have achieved a better results on the OCC dataset can be the occupation
descriptions tend to be shorter and have less variety compared with the cause of death
descriptions. The OCC dataset also has less codes with low code frequencies (see
Figure 4.2 and 4.3).

4.2.4 Chapter Summary

In this chapter, we analysed the characteristics of the COD and OCC datasets and
discussed the experimental results on both datasets.

In Section 4.1, we first showed the examples of the standard coding systems,
ICD-10 and HISCO. Then we summarised the main characteristics of our historical
datasets, namely: skewed distribution of classes; non-standard descriptions with dif-
ferent length; misspellings; and and human coding inconsistency. These characteris-
tics provide additional challenges for the classification task.

In Section 4.2, we designed experiments to evaluate the methodologies in Chap-
ter 3. For the COD dataset, we designed three main experiments, namely the clas-
sifier and feature experiment, spelling correction experiment, and PCA experiment,
where the patterns between best combinations and code frequency/text length were
explored.

For the OCC dataset, we designed two experiments using the parameters that
achieved top performance in the COD dataset. The results for the OCC dataset shows
consistency with the COD dataset, suggesting that our approaches achieve good gen-
eralisation.

In the next chapter, we will conclude this thesis. The overall best classification
performance will be summarised and compared with the results of previous research.

Chapter 5

Conclusion

This thesis set out to develop a method for automatically classifying historical descrip-
tions into standard classification systems. Two datasets collected from Scotland were
used, namely the cause of death (COD) and the occupation (OCC) datasets. In both
datasets, the historical descriptions and corresponding standard codes are given. The
COD dataset contains 23,564 records and 591 codes, while the COD dataset contains
64,063 records and 418 codes. The characteristics of each dataset were described in
Section 4.1.

We developed several methods to address the challenging problems brought by
the characteristics of the OCC and COD datasets. Firstly, the data are noisy (e.g., they
include misspellings and narrative descriptions) and inconsistent (i.e. the same text
descriptions can be coded into different classes). We developed a general cleaning
process (removing unwanted characters, stemming, etc.) and spelling corrections to
smooth noisy data. To address the problem of inconsistent coding, we altered all labels
for multiple-coded descriptions to the most frequent codes.

Secondly, the skewed distribution of codes and description lengths lead to data
sparsity. The low frequency of many codes also makes it difficult to use machine
learning methods for classification. We explored different classifier and feature com-
binations, and the experimental results showed that long feature combinations could
improve the performance of codes with low frequency. Furthermore, we conducted
PCA to reduce the sparsity and computational time. And after applying PCA, the
classification performance was also lightly improved for some classifiers (e.g. SVM).

In conclusion, three main processes were utilised in this project to achieve the clas-
sification goal. First, data pre-processing was conducted to smooth noisy historical de-
scriptions, including data cleaning, feature generation and dimensionality reduction.
This step is crucial for classification accuracy since the data collected from the real
world are noisy and non-standard. Second, we built classifiers for multiple classes.
A one-versus-the-rest transformation strategy was used to convert the multi-class and
multi-label classification problem into multiple binary classification problems. We
trained one classifier for each code. Naive Bayes (NB), logistic regression (LR), sup-
port vector machine (SVM) and decision tree (DT) were explored as classifier algo-
rithms. Third, the trained models were evaluated. The hold-out method was adopted
for evaluation, where the given dataset was split into a training dataset and a testing
dataset. We split the dataset in a balanced way, where relative class frequencies were

77

78 Conclusion

Data Metric Combination Prec Reca Fmea Time (s)

COD

Best Precision
[q2,q3,w2,w3,s1,s2]

[SVM, linear]
[PCA, 0.95]

0.78 0.60 0.62 2128

Best Recall
[w1]

[DT, entropy]
0.70 0.66 0.65 918

Best F-measure

OCC

Best Recall
[q2, q3, w1]

[NB, 0.1]
0.18 0.94 0.25 2620

Best Precision [q1, q2, q3, w1, w2]
[SVM, linear]
[PCA, 0.95]

0.93 0.82 0.85 94085
Best F-measure

Table 5.1: Overall best performance. In Combination column, the first row shows
the features we used, where ”q” represents character level features, ”w” represents
world level features, ”s” represents skip grams; and the number followed by character
represents the length of grams. For example, ”q2” represents character level bigrams.
Refer to Section 3.1.2 for further details. The second row represents classifiers, and the
last row shows whether PCA was applied. The time is specified by the unit of second.

Data Best Precision Best Recall Best F-measure
COD 0.84 0.40 0.40
OCC 0.61 0.65 –

Table 5.2: Classification results from previous work

approximately preserved in the training and testing datasets. The metrics precision,
recall and F-measure were used for evaluating each classifier’s performance on each
code. The overall performance was evaluated by the mean value of each classifier’s
score.

Experiments were conducted on both historical datasets (COD and OCC), with the
main experiments conducted on the COD dataset. The OCC dataset was used as a
validation process for developing the methods, that is, testing whether the developed
methods can be generalised to other datasets from other domains which also contain
short, noisy text descriptions and an imbalanced class distribution.

The best performance achieved on both datasets is summarised in Table 5.1. For
simplicity, the combination column in Table 5.1 only shows the main parameters (fea-
tures, classifiers, PCA). All experiments were conducted with cleaning process, in-
cluding both general cleaning and spelling correction. The best scores are highlighted
in Table 5.1. For the COD dataset, the best recall and F-measure are achieved by the
same combination; while for the OCC dataset, the best precision and F-measure are
achieved by the same combination.

79

For comparison, we present the results achieved by previous research [Carson
et al. 2013; Kirby et al. 2015] in Table 5.2, where they used the same datasets but dif-
ferent pre-processing and classification approaches. For the OCC dataset, Kirby et al.
[2015] did not include the F-measure as an evaluation measurement. For detailed
information about the previous work see Section 2.3.

Compared to the results of previous research (shown in Table 5.2), our approach
and methods significantly improved the classification performance, especially for the
OCC dataset. For the COD dataset, the precision of our approaches is slightly lower
than the previous result, while the recall and F-measure scores were improved around
50%.

To provide a more detailed overview of the results of this study, we now sum-
marise the key findings of the experiments. For the COD dataset, three main experi-
ments were conducted.

1. Classifier and Feature Experiment

• The most frequent combination that achieved the best F-measure for each
code was ”q2, q3, w2, w3, s1, SVM”. The most frequent feature combina-
tion achieved best F-measure was ”q2, q3, w2, w3, s1” and the most fre-
quent classifier was SVM. NB and LR performed much worse than SVM
and DT in most of cases.

• SVM achieved better performance when combined with long feature type
combinations (for example, ”q2, q3, w2, w3, s1, s2”) than short combina-
tions; while DT achieved better performance when combined with word
level feature types than character level feature types.

• When code frequency was low, DT and character level feature types per-
formed better; on the other hand, when code frequency was high, SVM
and word level feature types performed better.

• We also found that long feature combinations performed better than short
feature combinations when code frequency was low. That is, using more
features can improve the classification performance if there are only a few
training data records.

• For codes that had corresponding training records with shorter text length,
we found that SVM performed better; when codes had longer records, DT
performed better. The feature types’ performance did not show a clear pat-
tern in terms of different text lengths.

2. Spelling Correction Experiment

The best performance was achieved by the spelling correction algorithm (Algo-
rithm 1 see Page 30) with the following parameters: similarity threshold of 0.85;
frequency threshold of 2; and where edit distance was used as the string matching
method.

80 Conclusion

3. PCA experiment

• When 95% of the amount of variance was explained by PCA components,
SVM achieved the best performance, which was around 1% better than
the result (F-measure) achieved without conducting PCA and around 70%
computational time was reduced.

• For DT, the performance and computational time were both proportional to
the remaining dimensions. PCA reduced the computational time (around
56%), but at the same time, it greatly reduced the performance in terms of
accuracy (around 50%).

For the OCC dataset, two comparison experiments were conducted:

1. Classifier and Feature Experiment

• The performance for the OCC dataset was better compared to the COD
dataset. Similarly as the COD dataset, long feature combinations and SVM
achieved the best precision; but in contrast to the OCC dataset, NB achieved
a much higher recall.

• The LR and DT also achieved reasonably good performance with around
0.8 precision and recall, which is slightly worse than SVM. At the same
time, these two classifiers consumed less computational time compared to
SVM.

2. Spelling Correction and PCA experiment:

• The spelling correction algorithm, with frequency threshold set to 2, simi-
larity threshold set to 0.85 and using the edit distance method, improved the
F-measure by around 1%.

• PCA slightly improved the performance of SVM (around 1%) and LR (around
2%) and greatly reduced computational time for SVM (around 77%) and DT
(around 67%).

5.1 Limitations

Although the results achieved in this study made a substantial improvement over the
results of previous work, it still has a number of limitations. In this way, there are
three limitations of this study, which also serve to provide a basis for future work.

First, the overall classification performance is negatively influenced by the codes
with low frequencies (i.e. with only a few training records). We have found several
possible ways to deal with this problem, for example, use character level features and
long feature combinations for codes with low frequencies. However, we have not
applied these rules to improve the classification performance due to the limit of time.
Furthermore, even with the help of these rules, the performance of codes with low
frequencies is still much worse than codes with high frequencies.

§5.2 Future Work 81

Second, although the spelling correction algorithm we proposed can improve the
classification performance, it also happens that the algorithm sometimes wrongly re-
places the correct words with their similar words. As mentioned, in our datasets,
many words only appear once or twice, and therefore detecting potential misspellings
via term frequency can be inaccurate for our datasets.

Third, the PCA algorithm shows varied results for influencing the performance
of different classifiers. For example, PCA can improve the performance of SVM and
LR, but worsen the performance of NB and DT. We have not performed a sufficient
number of experiments to further explore and verify the reason behind it.

Taking these limitations as a point of departure, we now pose several potential
directions for future research.

5.2 Future Work

There are several directions for further development of this work:

• The rules and patterns we found in this project could be applied into a classifi-
cation process to conduct a rule-based classifier. For example, we could first use
character level feature types when the code frequency is low and use word level
feature types when the code frequency is high.

• Explore methods to classify unobserved records with codes appearing only a
few times in the training dataset. In our work, the overall performance is nega-
tively influenced by those low frequency codes.

• Explore methods to detect misspellings and correct them, especially when the
word frequencies are averagely low (i.e. occurring frequency cannot accurately
detect the misspellings).

• Analyse the reason that principal component analysis (PCA) has different influ-
ences on the performance of different classifiers, and based on that, investigate
ways to improve the performance of classification with PCA.

• Hierarchical classification could be considered, given that both historical coding
systems are hierarchical. For some codes we lack training records, therefore
classifying records into a higher hierarchy first and then classifying them into
refined classes may increase the classification accuracy.

• Investigate the applicability of this work to short text classification in other do-
mains, for example, classifying mentions of companies on Twitter into standard
industry classification schemes, such as the Global Industry Classification Stan-
dard 1.

1https://www.msci.com/gics

https://www.msci.com/gics

82 Conclusion

Appendix A

Appendix

A.1 COD Classifiers and Features Experiment

In this section, we demonstrate the top best combinations in terms of five code fre-
quency groups (CFGs) and three world length groups (WLGs), along with the fre-
quency included in a best combination. The best combination is defined as a combi-
nation which achieved the best F-measure score for a code among the scores return
by all models. The detailed information is introduced in Section 4.2.3 (Classifier and
Features Experiment, performance for each classifier).

We show the top 5 combinations, features and classifiers for each CFG in Tables
A.1 to A.5, and for each WLG in Tables A.6 to A.8.

Rank Combination Feature Classifier
name freq name freq name freq

1 q2 q3 w2 w3 s1, SVM 0.2034 q2 q3 w2 w3 s1 0.2034 SVM 0.3898
2 q1 w1 w3 s1, SVM 0.0508 q2 s1 0.0508 DT 0.3475
3 w2 w3, DT 0.0254 q1 w1 w3 s1 0.0508 NB 0.1186
4 w2 s2, SVM 0.0254 w1 0.0339
5 q2 s1, NB 0.0254 q1 w1 s1 s2 0.0339

Table A.1: Rank results for CFG 1 (with code frequency [1,2])

Rank Combination Feature Classifier
name freq name freq name freq

1 q2 q3 w2 w3 s1, SVM 0.2712 q2 q3 w2 w3 s1 0.2712 DT 0.4831
2 q2 q3 w3 s2, DT 0.1102 q2 q3 w3 s2 0.1102 SVM 0.4661
3 w3, DT 0.0678 w3 0.0678 NB 0.0254
4 w2 w3, DT 0.0593 w2 w3 0.0593
5 s1 s2, SVM 0.0424 s1 s2 0.0508

Table A.2: Rank results for CFG 2 (with code frequency [2,4])

83

84 Appendix

Rank Combination Feature Classifier
name freq name freq name freq

1 q2 q3 w2 w3 s1, SVM 0.2712 q2 q3 w2 w3 s1 0.2712 SVM 0.5847
2 w3, DT 0.0508 w3 0.0508 DT 0.2966
3 q1 w1 w3 s1, SVM 0.0508 q1 w1 w3 s1 0.0508 NB 0.0678
4 q2 q3 w3 s2, DT 0.0339 q2 q3 w3 s2 0.0339 LR 0.0339
5 q2 q3 w2 s2, SVM 0.0339 q2 q3 w2 s2 0.0339

Table A.3: Rank results for CFG 3 (with code frequency [4,12])

Rank Combination Feature Classifier
name freq name freq name freq

1 q2 q3 w2 w3 s1, SVM 0.2288 q2 q3 w2 w3 s1 0.2288 SVM 0.5763
2 q1 w1 w3 s1, SVM 0.0508 q1 w1 w3 s1 0.0508 DT 0.3644
3 w3, DT 0.0424 w3 0.0424 NB 0.0593
4 q2 q3 w3 s2, DT 0.0424 w1 w2 w3 0.0424
5 w2 w3, DT 0.0339 q2 q3 w3 s2 0.0424

Table A.4: Rank results for CFG 4 (with code frequency [12,42])

Rank Combination Feature Classifier
name freq name freq name freq

1 q2 q3 w2 w3 s1, SVM 0.1102 w1 w3 0.1102 SVM 0.6949
2 w1 w3, SVM 0.1017 w1 w2 w3 0.1102 DT 0.2627
3 w1 w2 w3, SVM 0.0847 q2 q3 w2 w3 s1 0.1102 NB 0.0339
4 w1, SVM 0.0678 w1 w2 0.1017 LR 0.0254
5 w1 w2, SVM 0.0593 w1 0.0763

Table A.5: Rank results for CFG 5 (with code frequency [42,2834])

Rank Combination Feature Classifier
name freq name freq name freq

1 q2 q3 w2 w3 s1, SVM 0.264 q2 q3 w2 w3 s1 0.264 SVM 0.7056
2 w1, SVM 0.0609 w1 0.0711 DT 0.203
3 w1 w2 w3, SVM 0.0508 w1 w2 w3 0.066 NB 0.066
4 w1 w3, SVM 0.0457 w1 w3 0.0457
5 q2 q3 w3 s2, DT 0.0406 q2 q3 w3 s2 0.0406

Table A.6: Rank results for WLG 1 (with world length [1,2])

§A.1 COD Classifiers and Features Experiment 85

Rank Combination Feature Classifier
name freq name freq name freq

1 q2 q3 w2 w3 s1, SVM 0.2538 q2 q3 w2 w3 s1 0.2538 SVM 0.5279
2 w3, DT 0.0609 w3 0.0609 DT 0.401
3 w2 w3, DT 0.0609 w2 w3 0.0609 NB 0.0355
4 q1 w1 w3 s1, SVM 0.0609 q1 w1 w3 s1 0.0609 LG 0.0203
5 q2 q3 w3 s2, DT 0.0457 q2 q3 w3 s2 0.0457

Table A.7: Rank results for WLG 2 (with world length [2,3])

Rank Combination Feature Classifier
name freq name freq name freq

1 q2 q3 w2 w3 s1, SVM 0.132 q2 q3 w2 w3 s1 0.132 DT 0.4467
2 q2 q3 w3 s2, DT 0.0508 q2 q3 w3 s2 0.0508 SVM 0.3909
3 w3, DT 0.0457 w3 0.0457 NB 0.0812
4 q1 w1 w3 s1, SVM 0.0355 q1 w1 w3 s1 0.0355 LG 0.0152
5 w2 w3, DT 0.0305 w2 w3 0.0305

Table A.8: Rank results for WLG 3 (with world length [3,11])

86 Appendix

Bibliography

ALY, M. 2005. Survey on multiclass classification methods. Neural Netw 19, 1–9.

ANAND, R., MEHROTRA, K., MOHAN, C. K., AND RANKA, S. 1995. Efficient clas-
sification for multiclass problems using modular neural networks. IEEE Transac-
tions on Neural Networks 6, 1, 117–124.

APACHE SOFTWARE FOUNDATION. 2010. Apache OpenNLP. Available at:
http://opennlp.apache.org/, Accessed January 29, 2013.

BAKER, L. D. AND MCCALLUM, A. K. 1998. Distributional clustering of words for
text classification. In Proceedings of the 21st Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR ’98 (New York, NY,
USA, 1998), pp. 96–103. ACM.

BAOXUN, X., XIUFENG, G., YUNMING, Y., AND JIEFENG, C. 2012. An improved
random forest classifier for text categorization. JOURNAL OF COMPUTERS 7, 12
(Dec), 2913–2920.

BELLMAN, R. 2013. Dynamic programming. Courier Corporation.

BISHOP, C. M. 2006. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

BOTTERO, W. AND PRANDY, K. 2001. Women’s occupations and the social order
in nineteenth century britain. Sociological Research Online 6, 2, 1–17.

BREIMAN, L. 2001. Random forests. Machine Learning 45, 1 (Oct), 5–32.

CARSON, J., KIRBY, G., DEARLE, A., WILLIAMSON, L., GARRETT, E., REID, A., AND

DIBBEN, C. 2013. Exploiting historical registers: Automatic methods for coding c19th
and c20th cause of death descriptions to standard classifications, pp. 598–607. Eurostat.

CHANG, C.-C. AND LIN, C.-J. 2011. Libsvm: a library for support vector ma-
chines. ACM transactions on intelligent systems and technology (TIST) 2, 3, 27.

CHEN, Y.-L., HSU, C.-L., AND CHOU, S.-C. 2003. Constructing a multi-valued
and multi-labeled decision tree. Expert Systems with Applications 25, 2, 199 – 209.

CHRISTEN, P. 2006. A comparison of personal name matching: Techniques and
practical issues. In Sixth IEEE International Conference on Data Mining - Workshops
(ICDMW’06) (Dec 2006), pp. 290–294.

CHRISTEN, P. 2012. Data Matching: Concepts and Techniques for Record Linkage, En-
tity Resolution, and Duplicate Detection. Data-Centric Systems and Applications.
Springer Berlin Heidelberg.

87

88 Bibliography

CONNELLY, R., PLAYFORD, C. J., GAYLE, V., AND DIBBEN, C. 2016. The role of ad-
ministrative data in the big data revolution in social science research. Social Science
Research 59, 1 – 12. Special issue on Big Data in the Social Sciences.

DIETTERICH, T. G. 2000. Ensemble Methods in Machine Learning. In Multiple Classi-
fier Systems. Berlin, Heidelberg: Springer (Vol. 1857, pp. 115).

ELISSEEFF, A. AND WESTON, J. 2002. A kernel method for multi-labelled classifi-
cation. In Advances in neural information processing systems (2002), pp. 681–687.

FODOR, I. K. A survey of dimension reduction techniques.

FOX, E. 2017. Decision trees: Overfitting.

FRIEDMAN, C. AND SIDELI, R. 1992. Tolerating spelling errors during patient val-
idation. Computers and Biomedical Research 25, 5, 486 – 509.

GAIL, H. R., HANTLER, S. L., LAKER, M. M., LENCHNER, J., AND MILCH, D. 2016.
Method and apparatus for automatic detection of spelling errors in one or more
documents. US Patent 9,465,791.

GENKIN, A., LEWIS, D. D., AND MADIGAN, D. 2007. Large-scale bayesian logistic
regression for text categorization. Technometrics 49, 3, 291–304.

GUNN, S. R. ET AL. 1998. Support vector machines for classification and regres-
sion. ISIS technical report 14, 1, 5–16.

GUTHRIE, D., ALLISON, B., LIU, W., GUTHRIE, L., AND WILKS, Y. 2006. A closer
look at skip-gram modelling. In Proceedings of the 5th international Conference on Lan-
guage Resources and Evaluation (LREC-2006) (2006), pp. 1–4. sn.

GUYON, I. AND ELISSEEFF, A. 2003. An introduction to variable and feature selec-
tion. J. Mach. Learn. Res. 3, 1157–1182.

HAN, J., KAMBER, M., AND PEI, J. 2011. Data Mining: Concepts and Techniques (3rd
ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

JOACHIMS, T. 1996. A probabilistic analysis of the rocchio algorithm with tfidf for
text categorization. Technical report, Carnegie-mellon univ pittsburgh pa dept of
computer science.

JOACHIMS, T. 1998. Text categorization with Support Vector Machines: Learning with
many relevant features, pp. 137–142. Springer Berlin Heidelberg, Berlin, Heidelberg.

JOHN, G. H. AND LANGLEY, P. 1995. Estimating continuous distributions in
bayesian classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Ar-
tificial Intelligence, UAI’95 (San Francisco, CA, USA, 1995), pp. 338–345. Morgan
Kaufmann Publishers Inc.

JOLLIFFE, I. T. 1986. Principal Component Analysis and Factor Analysis, pp. 115–128.
Springer New York, New York, NY.

KEOGH, E. AND MUEEN, A. 2017. Curse of dimensionality. In Encyclopedia of Ma-
chine Learning and Data Mining, pp. 314–315. Springer.

Bibliography 89

KESKUSTALO, H., PIRKOLA, A., VISALA, K., LEPPÄNEN, E., AND JÄRVELIN, K.
2003. Non-adjacent digrams improve matching of cross-lingual spelling variants.
In M. A. NASCIMENTO, E. S. DE MOURA, AND A. L. OLIVEIRA Eds., String Process-
ing and Information Retrieval (Berlin, Heidelberg, 2003), pp. 252–265. Springer Berlin
Heidelberg.

KIM, S.-B., HAN, K.-S., RIM, H.-C., AND MYAENG, S. H. 2006. Some effective
techniques for naive bayes text classification. IEEE Transactions on Knowledge and
Data Engineering 18, 11 (Nov), 1457–1466.

KIRBY, G., CARSON, J., DUNLOP, F., DIBBEN, C., DEARLE, A., WILLIAMSON, L.,
GARRETT, E., AND REID, A. 2015. Automatic Methods for Coding Historical Occu-
pation Descriptions to Standard Classifications, pp. 43–60. Springer International Pub-
lishing, Cham.

KIRBY, G., HAJIARABDERKANI, M., DEARLE, A., CARSON, J., DUNLOP, F., DIBBEN,
C., AND WILLIAMSON, L. 2015. Automatic extraction of multiple underlying
causes from textual death records (8 2015).

KOHAVI, R. ET AL. 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Ijcai, Volume 14 (1995), pp. 1137–1145. Montreal,
Canada.

KOTSIANTIS, S. AND KANELLOPOULOS, D. 2005. Discretization techniques: A re-
cent survey. 32, 47–58.

KOWSARI, K., BROWN, D. E., HEIDARYSAFA, M., MEIMANDI, K. J., GERBER, M. S.,
AND BARNES, L. E. 2017. Hdltex: Hierarchical deep learning for text classifica-
tion. arXiv preprint arXiv:1709.08267.

KUKICH, K. 1992. Techniques for automatically correcting words in text. ACM
Comput. Surv. 24, 377–439.

LAI, S., XU, L., LIU, K., AND ZHAO, J. 2015. Recurrent convolutional neural net-
works for text classification. In AAAI, Volume 333 (2015), pp. 2267–2273.

LARSON, R. R. 2009. Introduction to information retrieval. Journal of the American
Society for Information Science and Technology 61, 4, 852–853.

LESKOVEC, J., RAJARAMAN, A., AND ULLMAN, J. D. 2014. Mining of massive
datasets. Cambridge university press.

LEWIS, D. D. AND RINGUETTE, M. 1994. A comparison of two learning algorithms
for text categorization. In In Third Annual Symposium on Document Analysis and In-
formation Retrieval (1994), pp. 81–93.

LOPER, E. AND BIRD, S. 2002. Nltk: The natural language toolkit. In Proceedings of
the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Language
Processing and Computational Linguistics - Volume 1, ETMTNLP ’02 (Stroudsburg, PA,
USA, 2002), pp. 63–70. Association for Computational Linguistics.

MARINA, S. AND GUY, L. 2009. A systematic analysis of performance measures
for classification tasks. Information Processing Management 45, 4, 427 – 437.

90 Bibliography

MAZEIKA, A. AND BOHLEN, M. H. 2006. Cleansing databases of misspelled
proper nouns. In In CleanDB Workshop (2006), pp. 63–70.

MEIER, L., VAN DE GEER, S., AND BÜHLMANN, P. 2008. The group lasso for lo-
gistic regression. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 70, 1, 53–71.

MURPHY, K. P. 2006. Naive bayes classifiers. University of British Columbia 18.

NATIONAL RECORDS OF SCOTLAND. 1901. National records of 1901 census in scot-
land.

NATIONAL RECORDS OF SCOTLAND. 1980. Scottish birth, marriage and death
records. Who Do You Think You Are? Magazine.

PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A., MICHEL, V., THIRION, B., GRISEL,
O., BLONDEL, M., PRETTENHOFER, P., WEISS, R., DUBOURG, V., VANDERPLAS,
J., PASSOS, A., COURNAPEAU, D., BRUCHER, M., PERROT, M., AND DUCHESNAY,
E. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research 12, 2825–2830.

READ, J., PFAHRINGER, B., HOLMES, G., AND FRANK, E. 2011. Classifier chains
for multi-label classification. Machine Learning 85, 3 (Jun), 333.

REID, A., GARRETT, E., DIBBEN, C., AND WILLIAMSON, L. 2015. a confession of
ignorance: deaths from old age and deciphering cause-of-death statistics in scot-
land, 18551949. The History of the Family 20, 3, 320–344. PMID: 26900320.

RENNIE, J. D. 2001. Improving multi-class text classification with naive bayes.

SCHULZ, K. U. AND MIHOV, S. 2002. Fast string correction with levenshtein au-
tomata. International Journal on Document Analysis and Recognition 5, 1 (Nov), 67–85.

SEBASTIANI, F. 2002. Machine learning in automated text categorization. ACM
Comput. Surv. 34, 1 (March), 1–47.

STUART, K., A.; ORD. 1994. Kendall’s Advanced Theory of Statistics: Volume IDistri-
bution Theory. Edward Arnold.

TAKAHASHI, F. AND ABE, S. 2002. Decision-tree-based multiclass support vector
machines. In Neural Information Processing, 2002. ICONIP’02. Proceedings of the 9th
International Conference on, Volume 3 (2002), pp. 1418–1422. IEEE.

US BUREAU OF LABOR STATISTICS. 2010. Standard occupational classification
(soc) system. Available at: http://www.bls.gov/soc/ Accessed 2014.

UUZ, H. 2011. A two-stage feature selection method for text categorization by
using information gain, principal component analysis and genetic algorithm.
Knowledge-Based Systems 24, 7, 1024 – 1032.

VAN LEEUWEN, M. H., MAAS, I., AND MILES, A. 2002. HISCO: Historical interna-
tional standard classification of occupations. Leuven Univ Pr.

WAGNER, R. A. AND FISCHER, M. J. 1974. The string-to-string correction problem.
J. ACM 21, 1 (Jan.), 168–173.

Bibliography 91

WHO. 1990. Who international classification of diseases(icd-10). WHO. World
Health Organization. Available at: http://www.who.int/classifications/icd/en/
Accessed 2016.

WHO. 2004. ICD-10 : international statistical classification of diseases and related health
problems / World Health Organization (10th revision, 2nd ed. ed.). World Health Or-
ganization Geneva.

WILLETT, P. 2006. The porter stemming algorithm: then and now. Program 40, 3,
219–223.

WOLD, S., ESBENSEN, K., AND GELADI, P. 1987. Principal component analysis.
Chemometrics and Intelligent Laboratory Systems 2, 1, 37 – 52. Proceedings of the Mul-
tivariate Statistical Workshop for Geologists and Geochemists.

WOOLLARD, M. 2014. 3.1 administrative data: Problems and benefits. a perspec-
tive from the united kingdom1. Facing the Future: European Research Infrastructures
for the Humanities and Social Sciences, 49.

YANG, Y. AND PEDERSEN, J. O. 1997. A Comparative Study on Feature Selection
in Text Categorization.

	Acknowledgements
	Abstract
	Introduction
	Problem Statement
	Data Description
	Objectives
	Research Methodology
	Thesis outline

	Background
	Social Science Background
	Encoding Historical Classification System
	Cause of Death: ICD-10
	Occupation Titles: HISCO

	Related Work
	Data mining Techniques Explored
	Data Pre-processing
	Data Cleaning
	Feature Generation
	Feature Extraction: Dimensionality Reduction

	Classification
	Types of Classification Tasks
	Classifier Construction

	Evaluation

	Chapter Summary

	Methodology
	Data pre-processing
	Data cleaning
	Feature Generation
	Dimensionality Reduction: Principal Component Analysis

	Classification
	Multi-class and Multi-label Classification
	Classifier construction

	Evaluation
	Chapter Summary

	Evaluation
	Dataset Description
	Experiments and Results
	Experimental Setup
	COD : Experimental Design and Results
	OCC : Experimental Design and Results
	Chapter Summary

	Conclusion
	Limitations
	Future Work

	Appendix
	COD Classifiers and Features Experiment

	Bibliography

