Bandits: Best Arms Identification Classical Settings and methods

Mengyan Zhang

Australian National University; Data61, CSIRO

Currently @ MSRA Social Computing

Outline

- Definitions and Basic Settings
- Motivations and Applications
- Classical algorithms
 - Multi-armed bandits
 - UCB-based
 - Successive Rejects Type
 - Gap based a unified algorithm
 - Black-box function optimization for many/continuous arms
 - Contextual bandits: Linear rewards

Multi-armed Bandits: Sequential decision making

In each round t ϵ {1, .., N},

1. an agent selects an arm $A_t = i \in \{1, ..., K\}$ according policy π

2. then receive a reward $X_{i,T_i(t)}$ sampled from unknown distribution F_i

3. update estimations over distribution F_i based on historical observations

Multi-armed Bandits Sequential decision making

In each round t ϵ {1, .., N},

For a given user

- 1. an <u>agent</u> selects an <u>arm</u> $A_t = i \in \{1, ..., K\}$ according <u>policy</u> π Recommender system Item (e.g. news) Recommendation strategy
- 2. then receive a <u>reward</u> $X_{i,T_i(t)}$ sampled from unknown distribution F_i CTR/click; non-click

3. update estimations over distribution F_i based on historical observations

Multi-Armed Bandits

Simple regret $r_t = \mu^* - \mu_{A_t}$ where $\mu^* = \max_{k \in \{1,...,K\}} \mu_k$

Best Arm Identification _ Fixed Budget:

to recommend best arm(s) at the end of exploration stage

the number of round for exploration phase is fixed and known

Fixed Confidence:

the confidence level of quality of returned arms is fixed

Regret minimization: maximize the cumulative reward (i.e. minimize cumulative regret)

Cumulative regret $R_T = \sum_{t=1}^T r_t$

Best choice with the current information

Regret Minimization:
Exploitation vs. Exploration ?

Best Arm Identification: How to allocate samples adaptively ?

Best Arm Identification

to recommend best arm(s) at the end of exploration stage

Simple regret
$$r_t = \mu^* - \mu_{A_t}$$
 where $\mu^* = \max_{k \in \{1, ..., K\}} \mu_k$

Fixed Budget: the number of round for exploration phase is fixed and known -> To maximize the probability of returning the ϵ -optimal arm(s)

i.e. T is given, minimize Probability of error $\delta_T = P[r_T \ge \epsilon]$

When $\epsilon = 0, \delta_T = P[A_T \neq i^*]$ $E[r_T] = \sum_{i \neq i^*} P[A_T = i]\Delta_i$

Suboptimality gap $\Delta_i = \mu^* - \mu_i$ $\Delta_{min} \ \delta_T \leq E[r_T] \leq \Delta_{max} \ \delta_T$

 ϵ μ^* ϵ -optimal arm(s)

 δ_T and $\mathrm{E}[r_T]$ behave similarly

Fixed Confidence: the confidence level of quality of returned arms is fixed

-> To minimize the number of rounds needed

i.e. δ is given, minimize budget T s.t. $P[r_T \ge \epsilon] \le \delta$

Applications: Vaccine testing

- Identify optimal strategies (highest mean/median reward) for allocation vaccines
- Arm: vaccine allocation strategy
- Reward: proportion of individuals that did not experience symptomatic infection

Applications: Biological design

With fixed budget, design Ribosome Binding Site (RBS) sequences

Optimize the protein expression level

Identify the DNA sequences with highest possible protein expression level

Arm: RBS sequence	Reward: Normalized [*] Protein Expression Level
TTTAAGA <mark>GTTATA</mark> TATACAT	1.58
TTTAAGA <mark>ATATGC</mark> TATACAT	1.42
TTTAAGA <mark>CTCGGA</mark> TATACAT	0.14
TTTAAGAGTTTTTTATACAT	2.88

* zero mean and unit variance normalization $z = \frac{x-\mu}{\sigma}$

10

Zhang, M., and Ong, C. S. Opportunities and Challenges in Designing Genomic Sequences. ICML Workshop on Computational Biology 2021.

Applications: Recommendation System

- identify the most popular items (with potential high CTR) above some level of confidence using fewest possible samples
- Arm: item (e.g. news)
- Reward: click/ preference

Outline

- Definitions and Basic Settings
- Motivations and Applications
- Classical algorithms
 - Multi-armed bandits
 - UCB-based
 - Successive Rejects Type
 - Gap based a unified algorithm
 - Black-box function optimization for many/continuous arms
 - Contextual bandits: Linear rewards

Best Arm Identification in Multi-Armed Bandits

- K arms associated with K unknown reward distributions respectively (assume rewards are in [0,1] and there is a unique optimal arm),
- T rounds/budget,
- The agent select one arm A_t according to policy π -> observe reward drawn from v_{A_t} idependently from the past (actions and observations)

Simple regret $r_T = \mu^* - \mu_{A_T}$ where $\mu^* = \max_{k \in \{1,...,K\}} \mu_k$ Probability or error $\delta_T = P[A_T \neq i^*]$

Upper Confidence Bound (UCB)

UCB-E (Upper Confidence Bound Exploration) algorithm

$$\operatorname{argmax}_{i \in \{1, \dots, K\}} \quad B_{i,s} = \widehat{X}_{i,s} + \sqrt{\frac{a}{s}}$$
Suboptimality gap $\Delta_i = \mu^* - \mu_i$
Hardness of the task
$$H_1 = \sum_{i=1}^{K} \frac{1}{\Delta_i^2} \quad \text{and} \quad H_2 = \max_{i \in \{1, \dots, K\}} i\Delta_{(i)}^{-2}.$$
Probability or error $\delta_T \sim \exp(-c T/H_1)$

$$\operatorname{UCB-E:} a = \frac{25}{36} (T - K)/H_1$$

 H_1 is unknown and hard to be online estiamted!

Successive Rejects

$$\overline{log}(K) = \frac{1}{2} + \sum_{i=2}^{K} \frac{1}{i}$$
$$n_k = \left[\frac{1}{\overline{log}(K)} \frac{T-K}{K+1-k}\right], n_0 = 0$$

- Devide budget T into K-1 phases

 $n_k - n_{k-1}$

- In each phase k, pull equally often each arm which has one been rejected yet
- At the end of each phase, reject the arm with lowest empirical mean
- Recommend the last surviving arm

Suboptimality gap $\Delta_i = \mu^* - \mu_i$ Hardness of the task $H_1 = \sum_{i=1}^K \frac{1}{\Delta_i^2}$ and $H_2 = \max_{i \in \{1,...,K\}} i \Delta_{(i)}^{-2}$. $H_2 \leq H_1 \leq \log(2K)H_2$. Probability or error $\delta_T \sim \exp(-c T/H_2)$

Multi-arm Identification – Successive Accepts and Rejects

Best Arm Identification

to recommend best arm(s) at the end of exploration stage

Simple regret
$$r_t = \mu^* - \mu_{A_t}$$
 where $\mu^* = \max_{k \in \{1, ..., K\}} \mu_k$

Fixed Budget: the number of round for exploration phase is fixed and known -> To maximize the probability of returning the ϵ -optimal arm(s)

i.e. T is given, minimize Probability of error $\delta_T = P[r_T \ge \epsilon]$

When
$$\epsilon = 0, \delta_T = P[A_T \neq i^*]$$
 $E[r_T] = \sum_{i \neq i^*} P[A_T = i]\Delta_i$

Suboptimality gap $\Delta_i = \mu^* - \mu_i$ $\Delta_{min} \ \delta_T \leq E[r_T] \leq \Delta_{max} \ \delta_T$

 μ^* ϵ -optimal arm(s)

 δ_T and $\mathrm{E}[r_T]$ behave similarly

Fixed Confidence: the confidence level of quality of returned arms is fixed

-> To minimize the number of rounds needed

i.e. δ is given, minimize budget T s.t. $P[r_T \ge \epsilon] \le \delta$

Unified Methods: UGapE

SELECT-ARM (t)Compute $B_k(t)$ for each arm $k \in A$ Identify the set of m arms $J(t) \in \arg\min_{k \in A} B_k(t)$ 1..mPull the arm $I(t) = \arg \max \beta_k(t-1)$ $k \in \{l_t, u_t\}$ Observe $X_{I(t)}(T_{I(t)}(t-1)+1) \sim \nu_{I(t)}$ Update $\widehat{\mu}_{I(t)}(t)$ and $T_{I(t)}(t)$

High probability upper and lower bounds on the mean of arm k $\begin{bmatrix} U_k(t) = \hat{\mu}_k(t-1) + \beta_k(t-1) \\ L_k(t) = \hat{\mu}_k(t-1) - \beta_k(t-1). \end{bmatrix}$

Upper bound on simple regret $B_k(t) = \max_{i \neq k}^{-m} U_i(t) - L_k(t)$

Best possible arm left outside of J(t); worst possible arm among those in J(t); $u_t = \arg \max_{i \notin J(t)} U_j(t)$ and $l_t = \arg \min_{i \in J(t)} L_i(t)$ Represents: how bad the choice of J(t) could be

Fixed confidence
UGapEc:
$$\beta_k(t-1) = b \sqrt{\frac{c \log \frac{4K(t-1)^3}{\delta}}{T_k(t-1)}}$$

Gabillon, Victor, Mohammad Ghavamzadeh, and Alessandro Lazaric. Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence. In Advances in Neural Information Processing Systems 25. 2012.

Black-box function optimisation

Optimism in the face of uncertainty for black-box optimisation of a function f given stochastic evaluation of the function.

Optimism in the face of uncertainty

Given a subset $X_i \in \chi$

$$B_{t,T_{i}(t)}(X_{i}) \stackrel{\text{def}}{=} \frac{1}{T_{i}(t)} \sum_{s=1}^{T_{i}(t)} r_{\tau_{s}} + \sqrt{\frac{\log t/\eta}{2T_{i}(t)}} + \operatorname{diam}(X_{i}) \ge \max_{x \in X_{i}} f(x).$$

A trade-off in the choice of size of X_i

For many arms or continuous arms: Hierarchical Partition

For each round:

$$b_{h,j}(t) \stackrel{ ext{def}}{=} \hat{\mu}_{h,j}(t) + \sqrt{rac{\log(n^2/\eta)}{2T_{h,j}(t)}} + \delta(h),$$

- Select the leaf node with highest b-value
- sample the center point and collect rewards
- Expand node: when # draws > some threshold

(depends on T, smoothness of f)

Extend: model f as a sample from Guassian process, e.g. GPOO

Munos, Rémi. "From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning," 2014. Mengyan Zhang, Russell Tsuchida, and Cheng Soon Ong. "Gaussian Process Bandits with Aggregated Feedback". In: 36th AAAI Conference on Artificial Intelligence (2022)?²

Contextual BAI with linear rewards – Generalized Successive Elimination

 $y_i = f(x_i) + \epsilon$

Linear model $\hat{\mu}_{i,t} = x_i^T \hat{\theta}_t$

Generalized linear model $\hat{\mu}_{i,t} = g(x_i^T \hat{\theta}_t)$

e.g. logistic regression $g(x) = (1 + exp(-x))^{-1}$

Repeat

Explore: split budget evenly to each stage, then allocate the budget in each stage according to some allocation policy

Estimate: estimate each arm's mean $\hat{\mu}_{i,t}$

Elimination: sort arms in descending order of $\hat{\mu}_{i,t}$, keep the first $1/\eta$ of them while eliminating the rest **Until** only one arm is remained

Uniform allocation Optimal allocation

G-optimal design: minimize the maximum variance uniformly along all directions

Regret minimization: maximize the cumulative reward (i.e. minimize cumulative regret)

Collections of classical papers https://homepages.cwi.nl/~wmkoolen/PureExploration18/

References

- Even-Dar, Eyal, Shie Mannor, and Yishay Mansour. Action Elimination and Stopping Conditions for the Multi-Armed Bandit and Reinforcement Learning Problems. 2006.
- Audibert, Jean-Yves, and Sébastien Bubeck. Best Arm Identification in Multi-Armed Bandits. COLT2010.
- Gabillon, Victor, Mohammad Ghavamzadeh, and Alessandro Lazaric. Best Arm Identification: A Unified Approach to Fixed Budget and Fixed Confidence. In *Advances in Neural Information Processing Systems 25.* 2012.
- Bubeck, Sébastien, Tengyao Wang, and Nitin Viswanathan. Multiple Identifications in Multi-Armed Bandits. ICML2013.
- Munos, Rémi. "From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning," 2014.
- Mengyan Zhang, Russell Tsuchida, and Cheng Soon Ong.. Opportunities and Challenges in Designing Genomic Sequences. ICML Workshop on Computational Biology 2021.
- Mengyan Zhang, and Cheng Soon Ong. Quantile Bandits for Best Arms Identification. ICML2021.
- Azizi, MohammadJavad, Branislav Kveton, and Mohammad Ghavamzadeh. "Fixed-Budget Best-Arm Identification in Contextual Bandits: A Static-Adaptive Algorithm." *ArXiv:2106.04763 [Cs]*, June 9, 2021.
- Mengyan Zhang, Russell Tsuchida, and Cheng Soon Ong. Gaussian Process Bandits with Aggregated Feedback. AAAI2022.